【題目】已知函數(shù),.
(1)若時,求函數(shù)的最小值;
(2)若函數(shù)既有極大值又有極小值,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)代入,得,求導,利用導函數(shù)判定函數(shù)的單調(diào)性,即可求得函數(shù)的最小值;
(2)現(xiàn)求導數(shù),函數(shù)既有極大值又有極小值,等價于有兩個零點,可分和兩種情況分類討論,得到函數(shù)的單調(diào)性和極值,得到函數(shù)有極大值和極小值的條件,即可求解實數(shù)的取值范圍.
試題解析:
(1)當時,,定義域為.
,令,可得.
列表:
- | 0 | + | |
極小值 |
所以,函數(shù)的最小值為.
(2),定義域為,.
記,,,
①當時,,在上單調(diào)遞增,
故在上至多有一個零點,
此時,函數(shù)在上至多存在一個極小值,不存在極大值,不符題意;
②當時,令,可得,列表:
+ | 0 | - | |
極大值 |
若,即,,即,
故函數(shù)在上單調(diào)遞減,函數(shù)在上不存在極值,與題意不符,
若,即時,
由于,且 ,
故存在,使得,即,
且當時,,函數(shù)在上單調(diào)遞減;
當時,,函數(shù)在上單調(diào)遞增,函數(shù)在處取極小值.
由于,且 (事實上,令, ,故在上單調(diào)遞增,所以).
故存在,使得,即,
且當時,,函數(shù)在上單調(diào)遞增;
當時,,函數(shù)在上單調(diào)遞減,函數(shù)在處取極大值.
綜上所述,當時,函數(shù)在上既有極大值又有極小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的一段圖象如圖所示
(1)求的解析式;
(2)求的單調(diào)增區(qū)間,并指出的最大值及取到最大值時的集合;
(3)把的圖象向左至少平移多少個單位,才能使得到的圖象對應的函數(shù)為偶函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動.為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個小組中隨機抽取10名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:
(1)從參加問卷調(diào)查的10名學生中隨機抽取兩名,求這兩名學生來自同一個小組的概率;
(2)在參加問卷調(diào)查的10名學生中,從來自甲、丙兩個小組的學生中隨機抽取兩名,用表示抽得甲組學生的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面,,以為鄰邊作平行四邊形,連接.
(1)求證:平面;
(2)若二面角為.
求證:平面平面;
求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的方程為,拋物線:的焦點為,點是拋物線上到直線距離最小的點.
(1)求點的坐標;
(2)若直線與拋物線交于兩點,為中點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結論中正確的個數(shù)是
(1)對于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列的公差不為0,是其前項和,給出下列命題:
①若,且,則和都是中的最大項;
②給定,對一切,都有;
③若,則中一定有最小項;
④存在,使得和同號.
其中正確命題的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com