【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應值如下表:
x | |||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當 時,方程f(kx)=m恰有兩個不同的解,求實數(shù)m的取值范圍.
【答案】
(1)解:設f(x)的最小正周期為T,得 ,
由 ,得ω=1,
又 ,解得
令 ,即 ,解得 ,
∴
(2)解:∵函數(shù) 的周期為 ,
又k>0,∴k=3,
令 ,∵ ,∴ ,
如圖,sint=s在 上有兩個不同的解,則 ,
∴方程f(kx)=m在 時恰好有兩個不同的解,則 ,
即實數(shù)m的取值范圍是 .
【解析】(1)根據(jù)表格提供的數(shù)據(jù),求出周期T,解出ω,利用最小值、最大值求出A、B,結(jié)合周期求出φ,可求函數(shù)f(x)的一個解析式.(2)函數(shù)y=f(kx)(k>0)周期為 ,求出k, ,推出 的范圍,畫出圖象,數(shù)形結(jié)合容易求出m的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】為得到函數(shù)y=sin(x+ )的圖象,可將函數(shù)y=sinx的圖象向左平移m個單位長度,或向右平移n個單位長度(m,n均為正數(shù)),則|m﹣n|的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若不等式|2x﹣1|﹣|x+a|≥a對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的一個焦點與拋物線的焦點相同, ,為橢圓的左、右焦點.為橢圓上任意一點,△面積的最大值為1.
(1)求橢圓的方程;
(2)直線:交橢圓于,兩點.
(i)若直線與的斜率分別為,,且,求證:直線過定點,并求出該定點的坐標;
(ii)若直線的斜率時直線,斜率的等比中項,求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=sin2x的圖象,只要將y=sin(2x+ )函數(shù)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù)f(x)=2x2+(x﹣a)|x﹣a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設函數(shù)h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(3)過原點的直線交橢圓于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,﹣3),點P的橫坐標為14,且 ,點Q是邊AB上一點,且 .
(1)求實數(shù)λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com