【題目】[2019·龍泉驛區(qū)一中]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上三個(gè)以及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | ||
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮 | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮 |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了70輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損6000元,一輛非事故車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷售商店內(nèi)有7輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次性購(gòu)進(jìn)70輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值(結(jié)果用分?jǐn)?shù)表示).
【答案】(1);(2)①;②元
【解析】
(1)利用等可能事件概率計(jì)算公式,能求出一輛普通6座以下私家車第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的概率;(2)①由統(tǒng)計(jì)數(shù)據(jù)可知,該銷售商店內(nèi)的7輛該品牌車齡已滿三年的二手車中有2輛事故車,設(shè)為,,5輛非事故車,設(shè)為,,,.利用列舉法求出從7輛車中隨機(jī)挑選兩輛車的基本事件總和其中兩輛車恰好有一輛事故車包含的基本事件個(gè)數(shù),由此能求出該顧客在店內(nèi)隨機(jī)挑選的兩輛車恰好有一輛事故車的概率,②由統(tǒng)計(jì)數(shù)據(jù)可知,該銷售商一次購(gòu)進(jìn)70輛該品牌車齡已滿三年的二手車有事故車20輛,非事故車50輛,由此能求出一輛車盈利的平均值.
(1)一輛普通6座以下私家車第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率為
(2)①由統(tǒng)計(jì)數(shù)據(jù)可知,該銷售商店內(nèi)的7輛該品牌車齡已滿三年的二手車中有2輛事故車,設(shè)為,,5輛非事故車,設(shè)為,,,.從7輛車中隨機(jī)挑選2輛車的情況有,,,,,,,,,,,,,,,,,,,,共21種.其中2輛車恰好有一輛為事故車的情況有,,,,,,,,共10種,所以該顧客在店內(nèi)隨機(jī)挑選2輛車,這2輛車恰好有一輛事故車的概率為.
②由統(tǒng)計(jì)數(shù)據(jù)可知,該銷售商一次購(gòu)進(jìn)70輛該品牌車齡已滿三年的二手車有事故車20輛,非事故車50輛,所以一輛車盈利的平均值為 (元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列兩個(gè)命題: 函數(shù)在[2,+∞)單調(diào)遞增; 關(guān)于的不等式的解集為.若為真命題, 為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)0<b<1+a,若關(guān)于x的不等式(x﹣b)2>(ax)2的解集中的整數(shù)解恰有3個(gè),則( )
A.﹣1<a<0
B.0<a<1
C.1<a<3
D.3<a<6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了140位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 總計(jì) | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計(jì) | 70 | 140 |
(I)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(II)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:
(。能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為性別與支持申辦足球世界杯有關(guān);
(ⅱ)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取3人,求至多有1位老師的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,圓:,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn),直線交曲線
于另一點(diǎn),求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)滿足,,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè),求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的面積為4,如果矩形的周長(zhǎng)不大于10,則稱此矩形是“美觀矩形”.
(1)當(dāng)矩形ABCD是“美觀矩形”時(shí),求矩形周長(zhǎng)的取值范圍;
(2)就矩形ABCD的一邊長(zhǎng)x的不同值,討論矩形是否是“美觀矩形”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a為常數(shù)). (Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若函數(shù)f(x)在[﹣ , ]上的最大值與最小值之和為 ,求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com