【題目】如圖,在四棱錐P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求證:PD 平面PAB;
(2)求直線(xiàn)PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點(diǎn)M,使得BMll平面PCD?若存在,求 的值;若不存在,說(shuō)明理由。
【答案】
(1)
證明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
且AB⊥AD,AB平面ABCD,
∴AB⊥平面PAD,
∵PD平面PAD,
∴AB⊥PD,
又PD⊥PA,且PA∩AB=A,
∴PD⊥平面PAB;
(2)
解:如圖:
取 中點(diǎn)為 ,連結(jié) ,
∵
∴
∵
∴
以 為原點(diǎn),如圖建系
易知P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),
則 , , ,
設(shè) 為面 的法向量,令
,則 與面 夾角 有
(3)
解:假設(shè)存在 點(diǎn)使得 面
設(shè) ,
由(2)知 , , , ,
有
∴
∵ 面 , 為 的法向量
∴
即
∴
∴綜上,存在 點(diǎn),即當(dāng) 時(shí), 點(diǎn)即為所求
【解析】(1)由已知結(jié)合面面垂直的性質(zhì)可得AB⊥平面PAD,進(jìn)一步得到AB⊥PD,再由PD⊥PA,由線(xiàn)面垂直的判定得到PD⊥平面PAB;
(2)取AD中點(diǎn)為O,連接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),進(jìn)一步求出向量 的坐標(biāo),再求出平面PCD的法向量 ,設(shè)PB與平面PCD的夾角為θ,由 求得直線(xiàn)PB與平面PCD所成角的正弦值;
(3)假設(shè)存在M點(diǎn)使得BM∥平面PCD,設(shè) ,M(0,y1 , z1),由 可得M(0,1﹣λ,λ), ,由BM∥平面PCD,可得 ,由此列式求得當(dāng) 時(shí),M點(diǎn)即為所求.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線(xiàn)與平面之間的位置關(guān)系的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握直線(xiàn)在平面內(nèi)—有無(wú)數(shù)個(gè)公共點(diǎn);直線(xiàn)與平面相交—有且只有一個(gè)公共點(diǎn);直線(xiàn)在平面平行—沒(méi)有公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=3tan.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的定義域;
(3)說(shuō)明此函數(shù)的圖象是由y=tan x的圖象經(jīng)過(guò)怎樣的變換得到的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且有.
(1) 求C;
(2) 若c=3,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求以圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦為直徑的圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設(shè)P的橢圓C上一點(diǎn),直線(xiàn)PA與Y軸交于點(diǎn)M,直線(xiàn)PB與x軸交于點(diǎn)N。求證:lANl lBMl為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn): ,直線(xiàn)與拋物線(xiàn)交于, 兩點(diǎn).點(diǎn) 為拋物線(xiàn)上一動(dòng)點(diǎn),直線(xiàn), 分別與軸交于, .
(I)若的面積為,求點(diǎn)的坐標(biāo);
(II)當(dāng)直線(xiàn)時(shí),求線(xiàn)段的長(zhǎng);
(III)若與面積相等,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,焦距為2 .
(1)求橢圓C的方程;
(2)過(guò)動(dòng)點(diǎn)M(0,m)(m>0)的直線(xiàn)交x軸于點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線(xiàn)段PN的中點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn)交C于另一點(diǎn)Q,延長(zhǎng)QM交C于點(diǎn)B.
①設(shè)直線(xiàn)PM,QM的斜率分別為k,k′,證明 為定值;
②求直線(xiàn)AB的斜率的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com