【題目】如圖,在三棱柱中,是邊長為2的等邊三角形,,,.

1)證明:平面平面;

2,分別是,的中點(diǎn),是線段上的動(dòng)點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.

【答案】1)證明見解析;(2為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為

【解析】

1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;

2)分析位置關(guān)系并建立空間直角坐標(biāo)系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關(guān)系,即可計(jì)算出的坐標(biāo)從而位置可確定.

1)證明:因?yàn)?/span>,,,

所以,即.

又因?yàn)?/span>,所以,

,所以平面.

因?yàn)?/span>平面,所以平面平面.

2)解:連接,因?yàn)?/span>,的中點(diǎn),所以.

由(1)知,平面平面,所以平面.

為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系

則平面的一個(gè)法向量是,,.

設(shè),,

,,

代入上式得,,,所以.

設(shè)平面的一個(gè)法向量為,,,

,得.

,得.

因?yàn)槎娼?/span>的平面角的大小為,

所以,即,解得.

所以點(diǎn)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.

1)求的值;

2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?

文科生

理科生

合計(jì)

獲獎(jiǎng)

6

不獲獎(jiǎng)

合計(jì)

400

3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,銷售利潤分別為2千元/件、1千元/件.甲、乙兩種產(chǎn)品都需要在兩種設(shè)備上加工,生產(chǎn)一件甲產(chǎn)品需用設(shè)備2小時(shí), 設(shè)備6小時(shí);生產(chǎn)一件乙產(chǎn)品需用設(shè)備3小時(shí), 設(shè)備1小時(shí). 兩種設(shè)備每月可使用時(shí)間數(shù)分別為480小時(shí)、960小時(shí),若生產(chǎn)的產(chǎn)品都能及時(shí)售出,則該企業(yè)每月利潤的最大值為( )

A. 320千元 B. 360千元 C. 400千元 D. 440千元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2019年引進(jìn)天然氣作為能源,并將該項(xiàng)目工程承包給中昱公司.已知中昱公司為該市鋪設(shè)天然氣管道的固定成本為35萬元,每年的管道維修此用為5萬元.此外,該市若開通千戶使用天然氣用戶,公司每年還需投入成本萬元,且.通過市場(chǎng)調(diào)研,公司決定從每戶天然氣新用戶征收開戶費(fèi)用2500元,且用戶開通天然氣后,公司每年平均從每戶使用天然氣的過程中獲利360元.

1)設(shè)該市2019年共發(fā)展使用天然氣用戶千戶,求中昱公司這一年利潤(萬元)關(guān)于的函數(shù)關(guān)系式;

2)在(1)的條件下,當(dāng)等于多少最大?且最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點(diǎn)作直線AB交拋物線于A、B,求AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的最大值;

2)若存在正實(shí)數(shù)對(duì),使得當(dāng)時(shí),能成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某啤酒廠要將一批鮮啤酒用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,運(yùn)費(fèi)由廠家承擔(dān).若廠家恰能在約定日期(××日)將啤酒送到,則城市乙的銷售商一次性支付給廠家40萬元;若在約定日期前送到,每提前一天銷售商將多支付給廠家2萬;若在約定日期后送到,每遲到一天銷售商將少支付給廠家2萬元.為保證啤酒新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送.已知下表內(nèi)的信息:

汽車行駛路線

在不堵車的情況下到達(dá)城市乙所需時(shí)間(天)

在堵車的情況下到達(dá)城市乙所需時(shí)間(天)

堵車的概率

運(yùn)費(fèi)(萬元)

公路1

1

4

2

公路2

2

3

1

1)記汽車選擇公路1運(yùn)送啤酒時(shí)廠家獲得的毛收入為X(單位:萬元),求X的分布列和EX

2)若,,選擇哪條公路運(yùn)送啤酒廠家獲得的毛收人更多?

(注:毛收入=銷售商支付給廠家的費(fèi)用-運(yùn)費(fèi)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求實(shí)數(shù)的值;

(2)若有兩個(gè)極值點(diǎn),,求的取值范圍并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案