在△ABC中,∠A=15°,∠B=105°,若以A,B為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)C.則該橢圓的離心率e=______.
∵△ABC中,∠A=15°,∠B=105°,
設(shè)三角形外接圓半徑為R,則有正弦定理得:
∴|AB|=2RsinC=2Rsin60°,|BC|=2RsinA=2Rsin15°,|AC|=2RsinB=2Rsin105°.
∵橢圓以B,C為焦點(diǎn),且經(jīng)過(guò)A點(diǎn),
∴2a=|AC|+|CB|,2c=|BA|
∴橢圓離心率e=
c
a
=
2c
2a
=
|BA|
|AC|+|BC|
=
2Rsin60°
2Rsin15°+2Rsin105°
=
sin60°
sin15°+sin105°
=
sin60°
sin(60°-45°)+sin(60°+45°)
=
sin60°
(sin60°cos45°-cos60°sin45°)+(sin60°cos45°+cos60°sin45°)
=
sin60°
2sin60°cos45°
=
1
2
=
2
2

故答案為:
2
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)已知函數(shù)f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)在△ABC中,a、b、c為角A、B、C所對(duì)的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設(shè)內(nèi)角B為x,周長(zhǎng)為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中角A、B、C的對(duì)邊分別為a、b、c設(shè)向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案