【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市名男生的身高服從正態(tài)分布.現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于之間,將測量結(jié)果按如下方式分組: ,…, ,得到的頻率分布直方圖如圖所示.

(Ⅰ)試評估該校高三年級(jí)男生在全市高中男生中的平均身高狀況;

(Ⅱ)求這名男生身高在以上(含)的人數(shù);

(Ⅲ)在這名男生身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全市前名的人數(shù)記力,求的數(shù)學(xué)期望.

參考數(shù)據(jù):若,則,

,

【答案】(1)高于全市的平均值(2).

【解析】試題分析:利用頻率分布直方圖進(jìn)行求解;(利用頻率分布直方圖得到后三組的頻率,再求出人數(shù)即可;先確定人中以上的有人,寫出隨機(jī)變量的所有可能取值,利用超幾何分布得到每個(gè)變量的概率,利用期望公式進(jìn)行求解.

試題解析:Ⅰ)由頻率分布直方圖,經(jīng)過計(jì)算該校高三年級(jí)男生平均身高為

,

高于全市的平均值(或者:經(jīng)過計(jì)算該校高三年級(jí)男生平均身高為,比較接近全市的平均值).

Ⅱ)由頻率分布直方圖知,后三組頻率為,人數(shù)為,即這名男生身高在以上(含)的人數(shù)為人.

,

所以,全市前名的身高在以上,這人中以上的有人.

隨機(jī)變量可取, ,

于是

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參考方程為為參數(shù)).

(1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;

(2)過點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的正方形,平面,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)在拋物線上,已知以點(diǎn)為圓心, 為半徑的圓兩點(diǎn).

(Ⅰ)若, 的面積為4,求拋物線的方程;

(Ⅱ)若三點(diǎn)在同一條直線上,直線平行,且與拋物線只有一個(gè)公共點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右有頂點(diǎn)分別是、,上頂點(diǎn)是,圓的圓心到直線的距離是,且橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動(dòng)直線與橢圓和圓在第一象限內(nèi)的交點(diǎn)分別為、,直線軸的交點(diǎn)記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男,人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)只能自由選擇其中一道題進(jìn)行解答.選題情況如下表(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

1能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

2現(xiàn)從選擇做幾何題的名女生中,任意抽取兩人,對她們的答題情況進(jìn)行全程研究,記甲、乙兩位女生被抽到的人數(shù)為,求的分布列和.

附表及公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),若對于,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線斜率為2.

(Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)若上無解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 C: 的焦距為2,且過點(diǎn),右焦點(diǎn)為.設(shè)A,B 是C上的兩個(gè)動(dòng)點(diǎn),線段 AB 的中點(diǎn)M 的橫坐標(biāo)為,線段AB的中垂線交橢圓C于P,Q 兩點(diǎn).

(1)求橢圓 C 的方程;

(2)設(shè)M點(diǎn)縱坐標(biāo)為m,求直線PQ的方程,并求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案