下面使用的類比推理中恰當?shù)氖牵ā 。?/div>
A、“若m•2=n•2,則m=n”類比得出“若m•0=n•0,則m=n”
B、“(a+b)c=ac+bc”類比得出“(a•b)c=ac•bc”
C、“(a+b)c=ac+bc”類比得出“
a+b
c
=
a
c
+
b
c
(c≠0)”
D、“(pq)n=pn•qn”類比得出“(p+q)n=pn+qn
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l1:ax+3y-1=0,l2:x+by+1=0,則
a
b
=-3是l1⊥l2( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列函數(shù):
①f(x)=x 
1
2
;
②f(x)=2x;
③f(x)=log2x;
④f(x)=sinx.
則滿足關(guān)系式f′(
1
2
)>f(
3
2
)-f(
1
2
)>f′(
3
2
)的函數(shù)的序號是( 。
A、①③B、②④
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高!督y(tǒng)計》課程的教師隨機給出了選該課程的一些情況,具體數(shù)據(jù)如下:
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)
1310
720
為了判斷選修統(tǒng)計專業(yè)是否與性別有關(guān),根據(jù)表中數(shù)據(jù),得K2≈4.844,所以可以判定選修統(tǒng)計專業(yè)與性別有關(guān).那么這種判斷出錯的可能性為(  )
A、5%B、95%
C、1%D、99%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為減少“舌尖上的浪費”,某學校對在該校食堂用餐的學生能否做到“光盤”,進行隨機調(diào)查,從中隨機抽取男、女生各15名進行了問卷調(diào)查,得到了如下列聯(lián)表:
  男性 女性 合計
做不到“光盤” 12    
能做到“光盤”   10  
合計     30
(Ⅰ)請將上面的列聯(lián)表補充完整,并據(jù)此資料分析:有多大的把握可以認為“在學校食堂用餐的學生能否做到‘光盤’與行吧有關(guān)”?
(Ⅱ)若從這15名女學生中隨機抽取2人參加某一項活動,記其中做不到“光盤”的人數(shù)X,求X的分布列和數(shù)學期望.K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.05 0.025 0.010 0.005
k0 3.841 5.024 6.635 7.873

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線α”的結(jié)論顯然是錯誤的,這是因為
 

①大前提錯誤    
②小前提錯誤      
③推理形式錯誤       
④非以上錯誤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i為虛數(shù)單位,(
1-i
1+i
2=( 。
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD,且PD=AD,求:平面PAB的一個法向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若增廣矩陣為
m37
5n8
的二元線性方程組的解為
x=2
y=1
,則mn=
 

查看答案和解析>>

同步練習冊答案