如圖,F1、F2分別是橢圓C:=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
科目:高中數(shù)學 來源: 題型:解答題
我們把離心率為e=的雙曲線(a>0,b>0)稱為黃金雙曲線.如圖,是雙曲線的實軸頂點,是虛軸的頂點,是左右焦點,在雙曲線上且過右焦點,并且軸,給出以下幾個說法:
①雙曲線x2-=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是( )
A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為和,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知E(2,2)是拋物線C:y2=2px上一點,經過點(2,0)的直線l與拋物線C交于A,B兩點(不同于點E),直線EA,EB分別交直線x=-2于點M,N.
(1)求拋物線方程及其焦點坐標;
(2)已知O為原點,求證:∠MON為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設點P是圓x2+y2=4上任意一點,由點P向x軸作垂線PP0,垂足為P0,且=.
(1)求點M的軌跡C的方程;
(2)設直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點B(x1,y1),使得過點B的切線與兩坐標軸圍成的三角形的面積等于.若存在,請求出點B的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知的三個頂點都在拋物線上,且拋物線的焦點滿足,若邊上的中線所在直線的方程為(為常數(shù)且).
(1)求的值;
(2)為拋物線的頂點,,,的面積分別記為,,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).
(1)試求頂點P的軌跡C1的方程;
(2)若動點C(x1,y1)在軌跡C1上,試求動點Q的軌跡C2的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com