【題目】已知函數(shù)f(x)=x2+ .
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0, )和( ,+∞)上的單調(diào)性并用定義法證明.
【答案】
(1)證明:f(x)=x2+ ,則其定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對(duì)稱(chēng),
f(﹣x)=(﹣x)2+ =x2+ =f(x),
故函數(shù)f(x)為偶函數(shù)
(2)解:根據(jù)題意,函數(shù)f(x)在(0, )為減函數(shù),在( ,+∞)上為增函數(shù);
證明如下:
設(shè)0<x1<x2< ,
則f(x1)﹣f(x2)=(x1)2+( )﹣(x2)2+( )
=[(x1)2﹣(x2)2][ ]=[(x1﹣x2)(x1+x2)][ ],
又由0<x1<x2< ,
則f(x1)﹣f(x2)>0,
則f(x)在(0, )為減函數(shù),
同理設(shè) <x1<x2,
則f(x1)﹣f(x2)=(x1)2+( )﹣(x2)2+( )
=[(x1)2﹣(x2)2][ ]=[(x1﹣x2)(x1+x2)][ ],
又由 <x1<x2,
分析可得f(x1)﹣f(x2)<0,
則f(x)在(0, )為增函數(shù)
【解析】(1)、根據(jù)題意,先分析函數(shù)的定義域,進(jìn)而求出f(﹣x),分析與f(x)的關(guān)系,即可得證明;(2)、根據(jù)題意,分析可得函數(shù)f(x)在(0, )為減函數(shù),在( ,+∞)上為增函數(shù);進(jìn)而利用作差法證明即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn), 的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.
(1)求橢圓的方程;
(2)在橢圓上是否存在相異兩點(diǎn),使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點(diǎn)在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)= [f2(x)﹣2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若﹣m2+2tm+ ≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)人們休閑方式的一次調(diào)查中,共調(diào)查120人,其中女性70人、男性50人,女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)在犯錯(cuò)誤的概率不超過(guò)0.10的前提下,認(rèn)為休閑方式與性別是否有關(guān)?
參考數(shù)據(jù):獨(dú)立性檢驗(yàn)臨界值表
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= ,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有( )
①用反證法證明命題“a,b∈R,方程x3+ax+b=0至少有一個(gè)實(shí)根”時(shí),要作的假設(shè)是“方程至多有兩個(gè)實(shí)根”;
②用數(shù)學(xué)歸納法證明“1+2+22+…+2n+2=2n+3﹣1,在驗(yàn)證n=1時(shí),左邊的式子是1+2+22;
③用數(shù)學(xué)歸納法證明 + +…+ > (n∈N*)的過(guò)程中,由n=k推導(dǎo)到n=k+1時(shí),左邊增加的項(xiàng)為 + ,沒(méi)有減少的項(xiàng);
④演繹推理的結(jié)論一定正確;
⑤要證明“ ﹣ > ﹣ ”的最合理的方法是分析法.
A.①④
B.④
C.②③⑤
D.⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距12km.A車(chē)、B車(chē)先后從甲地出發(fā)勻速駛向乙地.A車(chē)從甲地到乙地需行駛15min;B車(chē)從甲地到乙地需行駛10min.若B車(chē)比A車(chē)晚出發(fā)2min:
(1)分別寫(xiě)出A,B兩車(chē)所行路程關(guān)于A車(chē)行駛時(shí)間的函數(shù)關(guān)系式;
(2)A,B兩車(chē)何時(shí)在途中相遇?相遇時(shí)距甲地多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,其中0<a<1,
(1)證明:f(x)是(a,+∞)上的減函數(shù);
(2)解不等式f(x)>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在[﹣2,2]上的偶函數(shù)g(x),當(dāng)x≥0時(shí),g(x)單調(diào)遞減,若g(1﹣m)﹣g(m)<0,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com