【題目】設集合A={x|-1x2},B={x|m-1x2m+1},已知BA.

(1)當xN時,求集合A的子集的個數(shù);

(2)求實數(shù)m的取值范圍.

【答案】(1)8(2)

【解析】

試題分析:(1)由集合中含有n個元素可知集合的子集個數(shù)為(2)由BA可得到兩集合邊界值的大小關系,從而得到關于m的不等式,得到m的取值范圍,求解時集合B要分空集和非空集合兩種情況討論

試題解析:1)∵當x∈N時,A={0,1,2},∴集合A的子集的個數(shù)為23=8.--------4分

(2)①當m-1>2m+1,即m<-2時,B=,符合題意;

②當m-1≤2m+1,即m≥-2時,B≠.由BA,借助數(shù)軸,如圖所示,

解得0≤m≤,所以0≤m≤。

綜合①②可知,實數(shù)m的取值范圍為. -----------10分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知過點的直線的參數(shù)方程是為參數(shù).以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.

求直線的普通方程和曲線的直角坐標方程;

若直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與直線相切.

(1)求圓的方程;

(2)過點的直線截圓所得弦長為,求直線的方程;

(3)設圓軸的負半抽的交點為,過點作兩條斜率分別為的直線交圓兩點,且,證明:直線過定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標準地震”的振幅使用標準地震振幅是為了修正測震儀距實際震中的距離造成的偏差。

1假設在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標準地震的振幅是0001,計算這次地震的震級精確到01;

25級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?

以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計劃對其進行改建,在的延長線上取點,使,在半圓上選定一點,改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設

(1)寫出關于的函數(shù)關系式,并指出的取值范圍;

(2)試問多大時,改建后的綠化區(qū)域面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛為了便于結(jié)算,每輛自行車的日租金只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用表示出租自行車的日凈收入即一日中出租自行車的總收入減去管理費用后的所得。

1求函數(shù)的解析式及其定義域;

2試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,集合

1,求實數(shù)的取值范圍;

2是否存在實數(shù),使?若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱錐P-ABC中,ACB=90°,CB=4,AB=20,D為AB中點,M為PB中點,且PDB是正三角形,PAPC。

.

(1)求證:DM平面PAC;

(2)求證:平面PAC平面ABC;

(3)求三棱錐M-BCD的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

利潤

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測月和月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過萬?

相關公式: , =.

查看答案和解析>>

同步練習冊答案