【題目】如圖,正三棱柱所有棱長都是2,D棱AC的中點,E是棱的中點,AE交于點H.

(1)求證:平面;

(2)求二面角的余弦值;

(3)求點到平面的距離.

【答案】(1)參考解析;(2) (3)

【解析】

試題分析:(1)由正三棱柱,可得平面ACB平面.又DBAC.所以如圖建立空間直角坐標系.分別點A,E,B,D, 的坐標,出相應(yīng)的向量.即可得到向量AE與向量BD,向量的數(shù)量積為零.即可得直線平面.

(2)由平面,平面分別求出這兩個平面的法向量,根據(jù)法向量的夾角得到二面角的余弦值(根據(jù)圖形取銳角).

(3)點到平面的距離,轉(zhuǎn)化為直線與法向量的關(guān)系,再通過解三角形的知識即可得點到平面的距離.本小題關(guān)鍵是應(yīng)用解三角形的知識.

試題解析:1)證明:建立如圖所示,

AEA1D AEBD

AEA1BD

2)由

設(shè)面AA1B的法向量為 ,

由圖可知二面角DBA1A的余弦值為

3,平面A1BD的法向量取

B1到平面A1BD的距離d=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】寫出由下列各組命題構(gòu)成的“pq”“pq”以及“非p”形式的命題,并判斷它們的真假:

(1)p3是素數(shù),q3是偶數(shù);

(2)px=-2是方程x2x20的解,qx1是方程x2x20的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (x∈R),e是自然對數(shù)的底.
(1)計算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分別用描述法和列舉法表示結(jié)果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},當集合P只有一個元素時,求實數(shù)a的值,并求出這個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,命題橢圓C1 表示的是焦點在軸上的橢圓,命題,直線與橢圓C2 恒有公共點.

(1)若命題“”是假命題,命題“”是真命題,求實數(shù)的取值范圍.

(2)若假時,求橢圓C1、橢圓C2的上焦點之間的距離d的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等腰直角三角形ABC的直角頂點A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設(shè)∠BAO=θ(O為坐標原點),AB=AC=2,當OC的長取得最大值時,tanθ的值為(
A.
B.﹣1+
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50名學生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖,估計這50名學生百米測試成績的中位數(shù)和平均數(shù)(精確到0.1).

(Ⅱ)若從第一、五組中隨機取出三名學生成績,設(shè)取自第一組的個數(shù)為,求的分布列,期望及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中, ,分別為的中點.

1)求證: 平面;

2)求三棱錐的體積(錐體的體積公式,其中為底面面積, 為高)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量 ,
(1)若 ,求證:△ABC為等腰三角形;
(2)若 ,邊長c=2,角C= ,求△ABC的面積.

查看答案和解析>>

同步練習冊答案