【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

【答案】D

【解析】

根據(jù)回歸直線方程可以判斷具有正線性相關(guān)關(guān)系,回歸直線過樣本的中心點(diǎn),該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg,該中學(xué)某高中女生身高為160cm,只能估計(jì)其體重,不能得出體重一定是多少.

根據(jù)回歸直線方程,但看函數(shù)圖象是單調(diào)遞增,可以判斷具有正線性相關(guān)關(guān)系,所以A選項(xiàng)說法正確;

回歸直線過樣本的中心點(diǎn),所以B選項(xiàng)說法正確;

根據(jù)斜率得該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg,所以C選項(xiàng)說法正確;

該中學(xué)某高中女生身高為160cm,根據(jù)回歸直線方程只能估計(jì)其體重,D選項(xiàng)說“可斷定其體重必為50.29kg”,這種說法錯(cuò)誤.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃)對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位:)的影響.為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

17.4

82.3

3.6

140

9.7

2935.1

35

其中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),求出關(guān)于的回歸方程;

3)當(dāng)時(shí)段控制溫度為28℃時(shí),雞的時(shí)段產(chǎn)蛋量的預(yù)報(bào)值(精確到0.1)是多少?

附:①對(duì)于一組具有線性相關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

②參考值.

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為 ,過點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M2,0),圓Cx2+y2+4x=0.

1)求直線3x+4y+1=0與圓Cx2+y2+4x=0相交所得的弦長(zhǎng)|MN|;

2)過點(diǎn)M的直線與圓C交于A,B兩個(gè)不同的點(diǎn),求弦AB的中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從柳州鐵一中高二男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位:)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

1)估計(jì)該校的100名同學(xué)體重的平均值和方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)若要從體重在內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再?gòu)倪@5人中隨機(jī)抽取2人,求被抽取的兩位同學(xué)來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感市某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中用分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過3小時(shí)).調(diào)查結(jié)果如表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,井判斷是否有90%的把握認(rèn)為“參加閱讀與否”與性別有關(guān);

男生

女生

總計(jì)

不參加課外閱讀

參課外閱讀

總計(jì)

3)從抽出的女生中再隨機(jī)抽取3人進(jìn)一步了解情況,記X為抽取的這3名女生中A類女生人數(shù),求X的數(shù)學(xué)期望.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,頂點(diǎn)在底面上的射影在棱上,,,的中點(diǎn)。

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值;

(Ⅲ)已知是平面內(nèi)一點(diǎn),點(diǎn)中點(diǎn),且平面,求線段的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓Ox軸于點(diǎn)F1F2,交y軸于點(diǎn)B1B2.以B1,B2為頂點(diǎn),F1F2分別為左、右焦點(diǎn)的橢圓E,恰好經(jīng)過點(diǎn)

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)設(shè)經(jīng)過點(diǎn)(﹣20)的直線l與橢圓E交于M,N兩點(diǎn),求△F2MN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案