【題目】2019年,中華人民共和國成立70周年,為了慶祝建國70周年,某中學(xué)在全校進(jìn)行了一次愛國主義知識(shí)競賽,共1000名學(xué)生參加,答對題數(shù)(共60題)分布如下表所示:

組別

頻數(shù)

10

185

265

400

115

25

答對題數(shù)近似服從正態(tài)分布,為這1000人答對題數(shù)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).

1)估計(jì)答對題數(shù)在內(nèi)的人數(shù)(精確到整數(shù)位).

2)學(xué)校為此次參加競賽的學(xué)生制定如下獎(jiǎng)勵(lì)方案:每名同學(xué)可以獲得2次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值與對應(yīng)的概率如下表所示.

獲得獎(jiǎng)品的價(jià)值(單位:元)

0

10

20

概率

(單位:元)表示學(xué)生甲參與抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值,求的分布列及數(shù)學(xué)期望.

附:若,則,.

【答案】19542)詳見解析

【解析】

1)由題意計(jì)算平均值,根據(jù)計(jì)算;(2)由題意知X的可能取值,計(jì)算對應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望.

1)根據(jù)題意,可得

,則

,,所以,所以.

故答對題數(shù)在內(nèi)的人數(shù)約為954.

2)由條件可知,的可能取值為0,1020,30,40.

;;

;;

.

的分布列為

0

10

20

30

40

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項(xiàng)數(shù)列的前項(xiàng)和為,,且,為常數(shù)).

1)求證:數(shù)列為等比數(shù)列;

2)若,且,對任意都有,求的值;

3)若,是否存在正整數(shù),且,使得三項(xiàng)成等比數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到的圖象,只要將圖象怎樣變化得到( )

A.的圖象沿x軸方向向左平移個(gè)單位

B.的圖象沿x軸方向向右平移個(gè)單位

C.先作關(guān)于x軸對稱圖象,再將圖象沿x軸方向向右平移個(gè)單位

D.先作關(guān)于x軸對稱圖象,再將圖象沿x軸方向向左平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.(本小題滿分16分)

已知函數(shù),并設(shè)

(1)圖像在處的切線方程為,求、的值;

(2)若函數(shù)上單調(diào)遞減,則

當(dāng)時(shí),試判斷的大小關(guān)系,并證明之;

對滿足題設(shè)條件的任意、,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1的焦點(diǎn),且拋物線C1上點(diǎn)P處的切線與圓C2相切于點(diǎn)Q.

當(dāng)直線PQ的方程為時(shí),求 拋物線C1的方程;

當(dāng)正數(shù)P變化時(shí),記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,點(diǎn)是它的右端點(diǎn),弦過橢圓的中心,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、為圓上不重合的兩點(diǎn),的平分線總是垂直于軸,且存在實(shí)數(shù),使得,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代科學(xué)家祖沖之兒子祖暅在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個(gè)同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的零點(diǎn).

(1)求的取值范圍;

(2)記兩個(gè)零點(diǎn)為,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)若,求的極值;

2)若曲線與直線有三個(gè)互異的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案