【題目】已知函數(shù)f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4個互異的實數(shù)根,則實數(shù)a的取值范圍為

【答案】(0,1)∪(9,+∞)
【解析】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,
作出函數(shù)y=f(x),y=g(x)=a|x﹣1|的圖象,
當a≤0,兩個函數(shù)的圖象不可能有4個交點,不滿足條件,
則a>0,此時g(x)=a|x﹣1|=
當﹣3<x<0時,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),
當直線和拋物線相切時,有三個零點,
此時﹣x2﹣3x=﹣a(x﹣1),
即x2+(3﹣a)x+a=0,
則由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,
當a=9時,g(x)=﹣9(x﹣1),g(0)=9,此時不成立,∴此時a=1,
要使兩個函數(shù)有四個零點,則此時0<a<1,
若a>1,此時g(x)=﹣a(x﹣1)與f(x),有兩個交點,
此時只需要當x>1時,f(x)=g(x)有兩個不同的零點即可,
即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,
則由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,
綜上a的取值范圍是(0,1)∪(9,+∞),
方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,
若x=1,則4=0不成立,
故x≠1,
則方程等價為a= = =| |=|x﹣1+ +5|,
設(shè)g(x)=x﹣1+ +5,
當x>1時,g(x)=x﹣1+ +5≥ ,當且僅當x﹣1= ,即x=3時取等號,
當x<1時,g(x)=x﹣1+ +5 =5﹣4=1,當且僅當﹣(x﹣1)=﹣ ,即x=﹣1時取等號,
則|g(x)|的圖象如圖:
若方程f(x)﹣a|x﹣1|=0恰有4個互異的實數(shù)根,
則滿足a>9或0<a<1,
所以答案是:(0,1)∪(9,+∞)


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為( )

A. B. 2 C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓 的離心率為,長軸長為4,過橢圓的左頂點作直線,分別交橢圓和圓于相異兩點

(1) 若直線的斜率為1,求的值:

(2) 若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:

他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )

A. 36 B. 45 C. 99 D. 100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓 + =1(a>b>0)的左、右焦點分別為F1、F2 , 右頂點為A,上頂點為B,已知|AB|= |F1F2|.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點F1 , 經(jīng)過原點O的直線l與該圓相切,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosxsin(x+ )﹣ cos2x+ ,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在閉區(qū)間[﹣ ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中a為常數(shù).

時,設(shè)函數(shù),判斷函數(shù)上是增函數(shù)還是減函數(shù),并說明理由;

設(shè)函數(shù),若函數(shù)有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量ξ的分布列為

ξ

﹣2

﹣1

0

1

2

3

P

若P(ξ2>x)= ,則實數(shù)x的取值范圍是

查看答案和解析>>

同步練習冊答案