【題目】已知方程ln|x|﹣ax2+ =0有4個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .
【答案】
【解析】解:由ln|x|﹣ax2+ =0,得ax2=ln|x|+ ,∵x≠0,
∴方程等價為a= ,
設(shè)f(x)= ,
則函數(shù)f(x)是偶函數(shù),
當(dāng)x>0時,f(x)= ,
則f′(x)= = ,
由f′(x)>0得﹣2x(1+lnx)>0,得1+lnx<0,即lnx<﹣1,得0<x< ,此時函數(shù)單調(diào)遞增,
由f′(x)<0得﹣2x(1+lnx)<0,得1+lnx>0,即lnx>﹣1,得x> ,此時函數(shù)單調(diào)遞減,
即當(dāng)x>0時,x= 時,函數(shù)f(x)取得極大值f( )=
=(﹣1+ )e2= e2 ,
作出函數(shù)f(x)的圖象如圖:
要使a= ,
有4個不同的交點(diǎn),
則滿足0<a< ,
所以答案是: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且b1=a1=1,b2=a3 , b3=a9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】α、β是兩個平面,m、n是兩條直線,有下列四個命題:
①如果m⊥n , m⊥α , n∥β , 那么α⊥β.
②如果m⊥α , n∥α , 那么m⊥n.
③如果α∥β , m α , 那么m∥β.
④如果m∥n , α∥β , 那么m與α所成的角和n與β所成的角相等.
其中正確的命題有.(填寫所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n﹣1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,….
(Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)數(shù)列 的前n項(xiàng)和為Sn , 證明:Sn> ,n∈N* .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,若sinC=( cosA+sinA)cosB,則( )
A.B=
B.2b=a+c
C.△ABC是直角三角形
D.a2=b2+c2或2B=A+C
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos = .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin ( cos ﹣sin )+ ,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)Sn為{an}的前n項(xiàng)和,bn=S2n﹣Sn , 求bn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= sinxcosx﹣sin2x,把f(x)的圖象向右平移 個單位,再向上平移2個單位,得到y(tǒng)=g(x)的圖象,若對任意實(shí)數(shù)x,都有g(shù)(α﹣x)=g(α+x)成立,則g(α+ )+g( )=( )
A.4
B.3
C.2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com