【題目】若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P,Q滿足條件:①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(P,Q)是函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”(點(diǎn)對(duì)(P,Q)與(Q,P)看作同一對(duì)“友好點(diǎn)對(duì)”).已知函數(shù)f(x)= ,則此函數(shù)的“友好點(diǎn)對(duì)”有( )
A.3對(duì)
B.2對(duì)
C.1對(duì)
D.0對(duì)
【答案】C
【解析】解:根據(jù)題意:“友好點(diǎn)對(duì)”,可知, 只須作出函數(shù)y=( )x(x>0)的圖象關(guān)于原點(diǎn)對(duì)稱的圖象,
看它與函數(shù)y=x+1(x≤0)交點(diǎn)個(gè)數(shù)即可.
如圖,觀察圖象可得:它們的交點(diǎn)個(gè)數(shù)是:1.
即函數(shù)f(x)= 的“友好點(diǎn)對(duì)”有1個(gè).
故選:C.
根據(jù)題意:“友好點(diǎn)對(duì)”,可知只須作出函數(shù)y=( )x(x>0)的圖象關(guān)于原點(diǎn)對(duì)稱的圖象,看它與函數(shù)y=x+1(x≤0)交點(diǎn)個(gè)數(shù)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長(zhǎng)為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓: 與軸的正半軸交于點(diǎn),以為圓心的圓: ()與圓交于, 兩點(diǎn).
(1)若直線與圓切于第一象限,且與坐標(biāo)軸交于, ,當(dāng)直線長(zhǎng)最小時(shí),求直線的方程;
(2)設(shè)是圓上異于, 的任意一點(diǎn),直線、分別與軸交于點(diǎn)和,問是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品在某零售攤位的零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)資料如下表所示:由表可得線性回歸方程中的,據(jù)此模型預(yù)測(cè)零售價(jià)為15元時(shí),每天的銷售量為_____個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}和{bn}的項(xiàng)數(shù)均為m,則將數(shù)列{an}和{bn}的距離定義為 |ai﹣bi|.
(1)給出數(shù)列1,3,5,6和數(shù)列2,3,10,7的距離;
(2)設(shè)A為滿足遞推關(guān)系an+1= 的所有數(shù)列{an}的集合,{bn}和{cn}為A中的兩個(gè)元素,且項(xiàng)數(shù)均為m,若b1=2,c1=3,{bn}和{cn}的距離小于2016,求m的最大值;
(3)記S是所有7項(xiàng)數(shù)列{an|1≤n≤7,an=0或1}的集合,TS,且T中任何兩個(gè)元素的距離大于或等于3,證明:T中的元素個(gè)數(shù)小于或等于16.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《中國(guó)新聞網(wǎng)》10月21日?qǐng)?bào)道,全國(guó)很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
態(tài)度 | 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 |
在校學(xué)生 | 2100人 | 120人 | y人 |
社會(huì)人士 | 600人 | x人 | z人 |
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,設(shè)f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設(shè) ,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com