已知函數(shù),函數(shù)
⑴當(dāng)時,求函數(shù)的表達式;
⑵若,函數(shù)上的最小值是2 ,求的值;

(1)(2).

解析試題分析:(1)分情況討論x的取值化簡絕對值,求出f′(x)得到x>0和x<0導(dǎo)函數(shù)相等,代入到g(x)中得到即可;
(2)根據(jù)基本不等式得到g(x)的最小值即可求出a.
試題解析:解:⑴∵,
∴當(dāng)時,; 當(dāng)時,
∴當(dāng)時,; 當(dāng)時,.
∴當(dāng)時,函數(shù)        .6分
⑵∵由⑴知當(dāng)時,,
∴當(dāng)時, 當(dāng)且僅當(dāng)時取等號           8分
∴函數(shù)上的最小值是,∴依題意得 ;    12分
考點:1.函數(shù)的最值及其幾何意義;2.導(dǎo)數(shù)的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)試問函數(shù)能否在處取得極值,請說明理由;
(2)若,當(dāng)時,函數(shù)的圖像有兩個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)統(tǒng)計資料,某工藝品廠的日產(chǎn)量最多不超過20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤日正品贏利額日廢品虧損額)
(1)將該車間日利潤(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時,日利潤最大?最大日利潤是幾千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若上恒成立,求所有實數(shù)的值;
(3)對任意的,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若方程內(nèi)有兩個不等的實根,求實數(shù)m的取值范圍;(e為自然對數(shù)的底數(shù))
(2)如果函數(shù)的圖象與x軸交于兩點、.求證:(其中正常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)R).
(1)若曲線在點處的切線與直線平行,求的值;
(2)在(1)條件下,求函數(shù)的單調(diào)區(qū)間和極值;
(3)當(dāng),且時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知a∈R,函數(shù)
(1)若a=1,求曲線在點(2,f (2))處的切線方程;
(2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),,當(dāng)函數(shù)有零點時,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)y=f(x)圖像上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍;
(3)求證:(其中,e是自然數(shù)對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案