【題目】已知拋物線,為其焦點,拋物線的準線交軸于點T,直線l交拋物線于A,B兩點。
(1)若O為坐標原點,直線l過拋物線焦點,且,求△AOB的面積;
(2)當直線l與坐標軸不垂直時,若點B關于x軸的對稱點在直線AT上,證明直線l過定點,并求出該定點的坐標。
【答案】(1);(2)定點為
【解析】
(1)利用,求得直線的斜率為,由此寫出直線方程,代入拋物線方程求得兩點的坐標,從而求得,用點到直線的距離公式求出高,由此求得三角形的面積.(2)設出直線的方程為,聯(lián)立直線方程和拋物線方程,寫出韋達定理.根據(jù)點斜式得出直線的方程,將點的坐標代入,然后利用韋達定理化簡,可求得和的關系式,由此求得直線所過定點的坐標.
設點,焦點坐標為,.
(1)因為,根據(jù)拋物線的定義可知,直線的斜率為.故直線的方程為,代入拋物線方程并化簡得解得,代入直線方程得,所以.直線的一般式為,原點到直線的距離,故.
(2)直線過定點,理由如下:設直線的方程為代入拋物線方程并化簡得,故.點關于軸的對稱點為.根據(jù)點斜式,得到直線的方程為,將點坐標代入并化簡得,將和的值代入并化簡得,即,故直線的方程為,過定點.
科目:高中數(shù)學 來源: 題型:
【題目】(理科)某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
將學生日均課外體育運動時間在上的學生評價為“課外體育達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為 “課外體育達標”與性別有關?
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的“課外體育達標”學生人數(shù)為,若每次抽取的結果是相互獨立的,求的數(shù)學期望.
獨立性檢驗界值表:
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等差數(shù)列中, ,其前項和為,等比數(shù)列的各項均為正數(shù), ,且, .
(1)求數(shù)列和的通項公式;
(2)令,設數(shù)列的前項和為,求()的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某果園基地培育出一種特色水果,要在某一季節(jié)內(nèi)采摘一批這種水果銷往A市,每售出1噸這種水果獲利800元,未售出的水果每噸虧損400元,根據(jù)去年市場調研數(shù)據(jù)統(tǒng)計,該季節(jié)A市對這種水果的市場需求量t(單位:噸,100≤t≤150)的頻率分布直方圖如圖所示.現(xiàn)該果園計劃采摘140噸這種水果運往A市,經(jīng)銷這種水果的利潤Q(單位:元)
(1)求Q關t的函數(shù)表達式;
(2)視頻率為概率,求利潤Q的分布列及數(shù)學期望.(每組數(shù)據(jù)以區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個袋中有2個紅球,4個白球.
(1)從中取出3個球,求取到紅球個數(shù)的概率分布及數(shù)學期望;
(2)每次取1個球,取出后記錄顏色并放回袋中.
①若取到第二次紅球就停止試驗,求第5次取球后試驗停止的概率;
②取球4次,求取到紅球個數(shù)的概率分布及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com