【題目】在平面直角坐標系中,橢圓的四個頂點圍成的四邊形面積為,圓經(jīng)過橢圓的短軸端點.
求橢圓的方程;
過橢圓的右焦點作互相垂直的兩條直線分別與橢圓相交于,和,四點,求四邊形面積的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,M為上的一點,以為折痕把折起,使點D到達點P的位置,且平面平面.連接,,點N為的中點,且平面.
(1)求線段的長;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設.
(1)若,求數(shù)列的通項公式;
(2)若,求數(shù)列的前項和;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應或開始呈現(xiàn)該疾病對應的相關癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)100名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關;
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點在圓上,直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;
(3)設點關于軸對稱點為(與點不重合),且直線與軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線:與曲線:交于,兩點,且的周長為.
(Ⅰ)求曲線的方程.
(Ⅱ)設過曲線焦點的直線與曲線交于,兩點,記直線,的斜率分別為,.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,直線與拋物線交于,兩點.
(1)若過點,證明:;
(2)若,點在曲線上,,的中點均在拋物線上,求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com