【題目】(1)設(shè)a,b是兩個不相等的正數(shù),若,用綜合法證明:a+b>4
(2)已知a>b>c,且a+b+c=0,用分析法證明: .
【答案】(1)詳見解析(2)詳見解析
【解析】試題分析:(1)綜合法,從已知條件出發(fā),利用定義、公理、定理、性質(zhì)等,經(jīng)過一系列的推理,論證而得出命題成立,這種證明方法稱為綜合法即“由因?qū)す?/span>”的方法;(2)分析法,從所要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至所需條件為已知條件或一個明顯成立的事實(shí),從而得出要證的命題成立,這種證明方法稱為分析法,即“執(zhí)果索因”的證明方法.
試題解析:(1)因?yàn)?/span>a>0,b>0,且a≠b,
所以a+b=(a+b)()=1+1+>2+2=4.所以a+b>4
(2)因?yàn)?/span>a>b>c,且a+b+c=0,所以a>0,c<0,
要證明原不等式成立,只需證明
即證b2-ac<3a2,又b=-(a+c),從而只需證明(a+c)2-ac<3a2,
即證(a-c)(2a+c)>0,
因?yàn)?/span>a-c>0,2a+c=a+c+a=a-b>0,
所以(a-c)(2a+c)>0成立,故原不等式成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(0,1),(3+2,0),(3-2,0)在圓C上.
(1)求圓C的方程.
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是雙曲線 左支上一點(diǎn), 是雙曲線的左右兩個焦點(diǎn),且,線段的垂直平分線恰好是該雙曲線的一條漸近線,則離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)陽光體育運(yùn)動的號召,某縣中學(xué)生足球活動正如火如荼地展開,該縣為了解本縣中學(xué)生的足球運(yùn)動狀況,根據(jù)性別采取分層抽樣的方法從全縣24000名中學(xué)生(其中男生14000人,女生10000人)中抽取120名,統(tǒng)計他們平均每天足球運(yùn)動的時間,如下表:(平均每天足球運(yùn)動的時間單位為小時,該縣中學(xué)生平均每天足球運(yùn)動的時間范圍是).
(1)請根據(jù)樣本估算該校男生平均每天足球運(yùn)動的時間(結(jié)果精確到0.1);
(2)若稱平均每天足球運(yùn)動的時間不少于2小時的學(xué)生為“足球健將”,低于2小時的學(xué)生為“非足球健將”.
①請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷,能否有90%的把握認(rèn)為是否為“足球健將”與性別有關(guān)?
②若在足球運(yùn)動時間不足1小時的男生中抽取2名代表了解情況,求這2名代表都是足球運(yùn)動時間不足半小時的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
3.841 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求不等式的解集;
(2)當(dāng)時,若對任意互不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;
(3)判斷函數(shù)在上的零點(diǎn)的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點(diǎn),已知.
(1)若有兩個不動點(diǎn)為,求函數(shù)的零點(diǎn);
(2)若時,函數(shù)沒有不動點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.
(1)若λ=0,求f(x)的最大值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù), 的值分別為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com