【題目】已知函數(shù),其中

I)若,求在區(qū)間上的最大值和最小值;

II)解關于x的不等式

【答案】(1)最小值為,最大值為;(2)見解析

【解析】試題分析:)a=1時,f(x)=(x﹣2)x=(x﹣1)2﹣1,由此能求出f(x)在區(qū)間[0,3]上的最大值和最小值,(Ⅱ)當a>0時,原不等式同解于(x﹣2)(x﹣)>0,當a<0時,原不等式同解于(x﹣2)(x﹣)<0,由此能求出當a>0時,不等式的解集為{x|x>2x<};當﹣1<a<0時,不等式的解集為{x|2<x<};當a=﹣1時,不等式的解集為;當a<﹣1時,不等式的解集為

詳解:

(Ⅰ)最小值為,最大值為;

(Ⅱ)當時,不等式解集為

時,不等式解集為

時,不等式解集為

時,不等式解集為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某初級中學有三個年級,各年級男、女人數(shù)如下表:

初一年級

初二年級

初三年級

女生

370

200

男生

380

370

300

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.
(1)求 的值;
(2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,求該樣本中女生的人數(shù);
(3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把這8人的左眼視力看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 (其中 為圓心)上的每一點橫坐標不變,縱坐標變?yōu)樵瓉淼囊话,得到曲線 .
(1)求曲線 的方程;
(2)若點 為曲線 上一點,過點 作曲線 的切線交圓 于不同的兩點 (其中 的右側(cè)),已知點 .求四邊形 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請按字母F、G、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結(jié)論;
(3)證明:直線DF⊥平面BEG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點為 ,上頂點為 , 周長為 ,離心率為 .
(1)求橢圓 的方程;
(2)若點 是橢圓 上第一象限內(nèi)的一個點,直線 過點 且與直線 平行,直線 與橢圓 交于 兩點,與 交于點 ,是否存在常數(shù) ,使 .若存在,求出 的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 )的右焦點為F,右頂點為A,已知 ,其中O 為原點, e為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點A的直線l與橢圓交于點B(B不在x軸上),垂直于l的直線與l交于點M,與y軸交于點H,若 ,且 ,求直線的l斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,且,其前n項之和為Sn,則滿足不等式的最小自然數(shù)n___.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有 2個紅球和 2個白球的口袋中任取 2個球,則下列每對事件中,互斥事件的對數(shù)是( )對

(1)“至少有 1個白球”與“都是白球” (2)“至少有 1個白球”與“至少有 1個紅球”

(3)“至少有 1個白球”與“恰有 2個白球” (4)“至少有 1個白球”與“都是紅球”

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱錐P﹣ABC中,△ABC是邊長為3的等邊三角形,D是線段AB的中點,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,則三棱錐P﹣ABC的外接球的表面積為

查看答案和解析>>

同步練習冊答案