【題目】已知離散型隨機變量X的分布列如表:

X

﹣1

0

1

2

P

a

b

c

若E(X)=0,D(X)=1,則a,b的值分別為(
A. ,
B. ,
C. ,
D.

【答案】B
【解析】解:∵E(X)=0,D(X)=1,
∴由離散型隨機變量X的分布列的性質(zhì)知:
,
解得a= ,b= ,c= ,
故選:B.
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關(guān)知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:
①定義在R上的函數(shù)f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個函數(shù)的解析式為y=x2 , 它的值域為{0,1,4},這樣的不同函數(shù)共有9個
④設(shè)函數(shù)f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有
其中為真命題的序號有(填上所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)停車場的收費標(biāo)準(zhǔn)為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現(xiàn)有甲乙兩人相互獨立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設(shè)甲、乙兩人停車時間(小時)與取車概率如下表所示:

(1)求甲、乙兩人所付車費相同的概率;

(2)設(shè)甲、乙兩人所付停車費之和為隨機變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù) (m∈Z)的圖象關(guān)于y軸對稱,且在區(qū)間(0,+∞)為減函數(shù)
(1)求m的值和函數(shù)f(x)的解析式
(2)解關(guān)于x的不等式f(x+2)<f(1﹣2x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實數(shù),函數(shù).

(1)若是函數(shù)的一個極值點,求實數(shù)的取值;

(2)設(shè),若,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p為非負(fù)實數(shù),隨機變量ξ的分布列為:

ξ

0

1

2

P

﹣p

p

則D(ξ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】⊙O1和⊙O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=﹣4sinθ.
(1)⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過⊙O1和⊙O2交點的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=x2﹣3x﹣4的定義域為[0,m],值域為 ,則m的取值范圍是( 。
A.(0,4]
B.

C.
D.

查看答案和解析>>

同步練習(xí)冊答案