【題目】如圖,公園有一塊邊長為的等邊的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,在上,在上.
(1)設(),,求用表示的函數(shù)關系式;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應在哪里?如果是參觀線路,則希望它最長,的位置又應在哪里?請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調區(qū)間;
(2)當時,若對任意的恒成立,求實數(shù)的值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果y=f(x)的定義域為R,對于定義域內的任意x,存在實數(shù)a使得f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質”;
②若奇函數(shù)y=f(x)具有“P(2)性質”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質”,圖象關于點(1,0)成中心對稱,且在(﹣1,0)上單調遞減,則y=f(x)在(﹣2,﹣1)上單調遞減,在(1,2)上單調遞增;
④若不恒為零的函數(shù)y=f(x)同時具有“P(0)性質”和“P(3)性質”,函數(shù)y=f(x)是周期函數(shù).
其中正確的是 (寫出所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,橢圓過點,直線交軸于,且,為坐標原點.
(1)求橢圓的方程;
(2)設是橢圓的上頂點,過點分別作直線交橢圓于兩點,設這兩條直線的斜率分別為,且,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),(1)求的值;(2)判斷并證明函數(shù)的單調性;(3)是否存在這樣的實數(shù),使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),點分別在的圖象上.
(1)若函數(shù)在處的切線恰好與相切,求的值;
(2)若點的橫坐標均為,記,當時,函數(shù)取得極大值,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在公差不為零的等差數(shù)列中,已知,且依次成等比數(shù)列.數(shù)列滿足,且.
(1)求數(shù)列, 的通項公式;
(2)求數(shù)列的前項和為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某港口要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口北偏西且與該港口相距20海里的處,并以30海里/時的航行速度沿正東方向勻速行駛,假設該小船沿直線方向以海里/時的航行速度勻速行駛,經(jīng)過小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)假設小艇的最高航行速度只能達到30海里/時,試設計航行方案(即確定航行方向與航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊三角形的地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分, 在上, 在上.
(1)設, ,請將表示為的函數(shù),并求出該函數(shù)的定義域;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短, 的位置應在哪里?如果是參觀線路,則希望它最長, 的位置又應在哪里?請予以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com