已知數(shù)列的各項均為正數(shù),其前項和為,且.
⑴求證:數(shù)列是等差數(shù)列;
⑵設(shè),求證:;
⑶設(shè),,求.
(1)詳見解析;(2)詳見解析;(3)
解析試題分析:(1)一般數(shù)列問題中出現(xiàn)數(shù)列前的和與其項時,則可利用關(guān)系找出數(shù)列的遞推關(guān)系,本題可從此入手,證明數(shù)列為等差數(shù)列;(2)由(1)可求出,根據(jù)此式的結(jié)構(gòu)特征,可得,利用裂項相消法求其前的和后再予以判斷;(3)根據(jù)數(shù)列的結(jié)構(gòu)特點(等差乘等比型)可用錯位相減法求和.證明數(shù)列為等差數(shù)列或等比數(shù)列,應(yīng)緊扣定義,通過對所給條件變形,得到遞推關(guān)系,而等差乘等比型數(shù)列的求和最常用的就是錯位相減法,使用這個方法在計算上要有耐心和細(xì)心,注意各項的符號,防止出錯.
試題解析:⑴證明:,當(dāng)時,或,又. 1分
由,得,
數(shù)列是以1為首項,1為公差的等差數(shù)列; 4分
⑵證明:由⑴知,,
. 8分
⑶,, ①
②
由①-②得,
. 12分
考點:等差數(shù)列、等比數(shù)列、錯位相減法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項均為正數(shù)的數(shù)列中,是數(shù)列的前項和,對任意,有
.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項和為,且是和的等差中項,等差數(shù)列滿足,.
(1)求數(shù)列、的通項公式;
(2)設(shè),數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和,滿足:.
(Ⅰ)求數(shù)列的通項;
(Ⅱ)若數(shù)列的滿足,為數(shù)列的前項和,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項和為,且=-n+20n,n∈N.
(Ⅰ)求通項;
(Ⅱ)設(shè)是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項和為,點在直線上.數(shù)列{bn}滿足,前9項和為153.
(Ⅰ)求數(shù)列、的通項公式;
(Ⅱ)設(shè),數(shù)列的前n和為,求使不等式對一切都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,;
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和,并求當(dāng)最大時序號的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和為,且有,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,求數(shù)列的前項和;
(Ⅲ)若,且數(shù)列 中的 每一項總小于它后面的項,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com