【題目】近幾年出現(xiàn)各種食品問(wèn)題,食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

患三高疾病

不患三高疾病

合計(jì)

6

30

合計(jì)

36

1請(qǐng)將如圖的列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,并說(shuō)明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?

下面的臨界值表供參考:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

參考公式,其中

【答案】13人;2的把握認(rèn)為是否患三高疾病與性別有關(guān)系

【解析】

試題分析:1根據(jù)題中所給數(shù)據(jù),通過(guò)2×2連列表,直接將如圖的列聯(lián)表補(bǔ)充完整;通過(guò)分層抽樣求出在患三高疾病的人群中抽9人的比例,即可求出女性抽的人數(shù).(2通過(guò)題中所給共識(shí)計(jì)算出,結(jié)合臨界值表,即可說(shuō)明有多大的把握認(rèn)為三高疾病與性別有關(guān)

試題解析:1

患三高疾病

不患三高疾病

合計(jì)

24

6

30

12

18

30

合計(jì)

36

24

60

在患三高疾病人群中抽人,則抽取比例為

女性應(yīng)該抽取6分

2 8分

10分

那么,我們有的把握認(rèn)為是否患三高疾病與性別有關(guān)系12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)一切x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,設(shè)P:當(dāng) 時(shí),不等式f(x)+3<2x+a恒成立,Q:當(dāng)x∈[﹣2,2]時(shí),g(x)=f(x)﹣ax是單調(diào)函數(shù),如果記使P成立的實(shí)數(shù)a的取值的集合為A,使Q成立的實(shí)數(shù)a的取值的集合為B,求A∩RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),滿(mǎn)足,實(shí)數(shù),滿(mǎn)足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】習(xí)大大構(gòu)建的“一帶一路”經(jīng)濟(jì)帶的發(fā)展規(guī)劃已經(jīng)得到了越來(lái)越多相關(guān)國(guó)家的重視和參與.岳陽(yáng)市旅游局順潮流、乘東風(fēng),聞?dòng)嵍鴦?dòng),決定利用旅游資源優(yōu)勢(shì),擼起袖子大干一場(chǎng).為了了解游客的情況,以便制定相應(yīng)的策略.在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫(huà)出莖葉圖如下:

(1)若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,求的值;

(2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù).今從這段時(shí)期內(nèi)任取4天,記其中游客數(shù)超過(guò)120人的天數(shù)為,求概率;

(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)M,N分別是正方體ABCD﹣A1B1C1D1的棱BB1和B1C1的中點(diǎn),則MN和CD1所成角的大小為(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線y2=2px(p>0)焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為(
A.y2=3x
B.y2=9x
C.y2= x
D.y2= x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,設(shè)命題p:指數(shù)函數(shù)y=ax(a>0且a≠1)在R上單調(diào)遞增;命題q:函數(shù)y=ln(ax2﹣ax+1)的定義域?yàn)镽,若“p且q”為假,“p或q”為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)的對(duì)稱(chēng)軸x=﹣2,f(x)的圖象被x軸截得的弦長(zhǎng)為2 ,且滿(mǎn)足f(0)=1.
(1)求f(x)的解析式;
(2)若f(( x)>k,對(duì)x∈[﹣1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,若E、F分別為PC、BD的中點(diǎn).
(Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.

查看答案和解析>>

同步練習(xí)冊(cè)答案