【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]
(1)求頻率分布圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60]的受訪職工中,隨機抽取2人,求此2人評分都在[40,50]的概率.
【答案】
(1)解:因為(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006
(2)解:由已知的頻率分布直方圖可知,50名受訪職工評分不低于80的頻率為(0.022+0.018)×10=0.4,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為0.4;
(3)解:受訪職工中評分在[50,60)的有:50×0.006×10=3(人),記為A1,A2,A3;
受訪職工評分在[40,50)的有:50×0.004×10=2(人),記為B1,B2.
從這5名受訪職工中隨機抽取2人,所有可能的結(jié)果共有10種,
分別是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},
又因為所抽取2人的評分都在[40,50)的結(jié)果有1種,即{B1,B2},
故所求的概率為P=
【解析】(1)利用頻率分布直方圖中的信息,所有矩形的面積和為1,得到a;(2)對該部門評分不低于80的即為90和100,的求出頻率,估計概率;(3)求出評分在[40,60]的受訪職工和評分都在[40,50]的人數(shù),隨機抽取2人,列舉法求出所有可能,利用古典概型公式解答.
【考點精析】通過靈活運用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點之間的距離為2π.
(1)求f(x)的解析式;
(2)若 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機器臺數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體的棱長為1, 分別是棱的中點,過直線的平面分別與棱交于,設(shè), ,給出以下四個命題:
①
②當且僅當時,四邊形的面積最。
③四邊形周長, ,則是奇函數(shù);
④四棱錐的體積為常函數(shù);
其中正確命題的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市共有初中學生270000人,其中初一年級,初二年級,初三年級學生人數(shù)分別為99000,90000,81000,為了解該市學生參加“開放性科學實驗活動”的意向,現(xiàn)采用分層抽樣的方法從中抽取一個容量為3000的樣本,那么應該抽取初三年級的人數(shù)為( )
A.800
B.900
C.1000
D.1100
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某出租車公司響應國家節(jié)能減排的號召,已陸續(xù)購買了140輛純電動汽車作為運營車輛,目前我國主流純電動汽車按續(xù)航里程數(shù).(單位:公里)分為3類,即類:,類:, 類:,該公司對這140輛車的行駛總里程進行統(tǒng)計,結(jié)果如下表:
類型 | 類 | 類 | 類 |
已行駛總里程不超過10萬公里的車輛數(shù) | 10 | 40 | 30 |
已行駛總里程超過10萬公里的車輛數(shù) | 20 | 20 | 20 |
(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;
(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進行車況分析,按表中描述的六種情況進行分層抽樣,設(shè)從類車中抽取了輛車.
①求的值;
②如果從這輛車中隨機選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將五個1,五個2,五個3,五個4,五個5共25個數(shù)填入一個5行5列的表格內(nèi)(每格填入一個數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個數(shù)之和,記這五個和的最小值為,則的最大值為( )
A. B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列具有性質(zhì):對任意, , 與兩數(shù)至少有一個屬于.
(Ⅰ)分別判斷數(shù)集與是否具有性質(zhì),并說明理由.
(Ⅱ)求證: .
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,直線(其中)與曲線相交于、兩點.
(Ⅰ)若,試判斷曲線的形狀.
(Ⅱ)若,以線段、為鄰邊作平行四邊形,其中頂點在曲線上, 為坐標原點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com