【題目】如圖,在直角坐標(biāo)系xOy中,角α的頂點是原點,始邊與x軸正半軸重合,終邊交單位圓于點A,且.將角α的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點B.記Ax1,y1),Bx2,y2).

(Ⅰ)若,求x2;

(Ⅱ)分別過A,Bx軸的垂線,垂足依次為C,D.記AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.

【答案】I;(II

【解析】

試題(I)根據(jù)三角函數(shù)定義寫出,再利用和角公式求解;(II)根據(jù)已知三角形的面積關(guān)系列等式,再利用三角變換求解.

)解:由三角函數(shù)定義,得2

因為,

所以3

所以5

)解:依題意得,

所以, 7

9

依題意得

整理得11

因為, 所以,

所以, 即13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃出售一種產(chǎn)品,經(jīng)銷人員并不是根據(jù)生產(chǎn)成本來確定這種產(chǎn)品的價格,而是通過對經(jīng)營產(chǎn)品的零售商對于不同的價格情況下他們會進多少貨進行調(diào)查,通過調(diào)查確定了關(guān)系式P=-750x+15000,其中P為零售商進貨的數(shù)量(單位:件),x為零售商支付的每件產(chǎn)品價格(單位:元).現(xiàn)估計生產(chǎn)這種產(chǎn)品每件的材料和勞動生產(chǎn)費用為4元,并且工廠生產(chǎn)這種產(chǎn)品的總固定成本為7000元(固定成本是除材料和勞動費用以外的其他費用),為獲得最大利潤,工廠應(yīng)對零售商每件收取多少元?并求此時的最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)當(dāng)=-1時,求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時,判斷的單調(diào)性,并用定義證明;

(2)若恒成立,求的取值范圍;

(3)討論的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的單調(diào)減區(qū)間是。

(1)求的解析式;

(2)若對任意的,關(guān)于的不等式

時有解,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實數(shù)a的取值范圍是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的長軸長為4,焦距為.

Ⅰ)求橢圓C的方程;

Ⅱ)過動點M0,m)(m>0)的直線交x軸與點N,交C于點A,PP在第一象限),且M是線段PN的中點,過點Px軸的垂線交C于另一點Q,延長線QMC于點B.

i)設(shè)直線PM、QM的斜率分別為k、,證明為定值.

ii)求直線AB的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,且 的最小值為t.
(1)求實數(shù)t的值;
(2)解關(guān)于x的不等式:|2x+1|+|2x﹣1|<t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

同步練習(xí)冊答案