【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為,是橢圓上一點,記直線的斜率為、,且有.
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于不同兩點和,且滿足(為坐標原點),求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數的圖像相鄰兩條對稱軸間的距離為,且,則以下命題中為假命題的是( )
A.函數在上是增函數.
B.函數圖像關于點對稱
C.函數的圖象可由的圖象向左平移個單位長度得到
D.函數的圖象關于直線對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,側面B1BCC1是正方形,M,N分別是A1B1,AC的中點,AB⊥平面BCM.
(Ⅰ)求證:平面B1BCC1⊥平面A1ABB1;
(Ⅱ)求證:A1N∥平面BCM;
(Ⅲ)若三棱柱ABC-A1B1C1的體積為10,求棱錐C1-BB1M的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為提高產品質量,某企業(yè)質量管理部門經常不定期地對產品進行抽查檢測,現對某條生產線上隨機抽取的100個產品進行相關數據的對比,并對每個產品進行綜合評分(滿分100分),將每個產品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產品為一等品.
(1)求圖中的值,并求綜合評分的中位數;
(2)用樣本估計總體,視頻率作為概率,在該條生產線中隨機抽取3個產品,求所抽取的產品中一等品數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉移軌道飛向月球,在月球附近一點變軌進入以月球球心為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點第二次變軌進入仍然以為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在點第三次變軌進入以為圓心的圓形軌道Ⅲ繞月飛行,若用和分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用和分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
①;②;③;④.
其中正確式子的序號是( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,則以下結論正確的是( )
A.函數的單調減區(qū)間是
B.函數有且只有1個零點
C.存在正實數,使得成立
D.對任意兩個正實數,,且,若則
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科.山東省采用3+3模式,其中語文、數學、外語三科為必考科目,每門科目滿分均為150分.另外考生還要依據想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每門科目滿分均為100分.為了應對新高考,某高中從高一年級1100名學生(其中男生600人,女生500人)中,采用分層抽樣的方法從中抽取n名學生進行調查,其中女生抽取50人.
(1)求n的值;
(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的n名學生進行問卷調查(假定每名學生在“物理”和“地理”這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據調查結果得到的一個不完整的2×2列聯(lián)表,請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為選擇科目與性別有關?說明你的理由;
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 30 | ||
合計 |
(3)按(2)中選“物理”的男生女生的比例進行分層抽樣,從選“物理”的學生中抽出8名學生,再從這8名學生中抽取3人組成物理興趣小組,設這3人中女生的人數為X,求X的概率分布列及數學期望.
附
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數分布表如下:
年齡段 | ||||
人數(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲~59歲為中年人,其余為青年人,現按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列列聯(lián)表,并回答能否有的把握認為年齡層與熱衷關心民生大事有關?
熱衷關心民生大事 | 不熱衷關心民生大事 | 總計 | |
青年 | 12 | ||
中年 | 5 | ||
總計 | 30 |
(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com