【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
【答案】
(1)解:設(shè)“至少1名傾向于選擇實(shí)體店”為事件A,
則 表示事件“隨機(jī)抽取2名,(其中男、女各一名)都選擇網(wǎng)購”,
則P(A)=1﹣P =1﹣ =
(2)解:X的取值為0,1,2,3.P(X=k)= ,
P(X=0)= ,P(X=1)= ,P(X=2)= ,P(X=3)= .
E(X)=0× +1× +2× +3× =
【解析】(1)設(shè)“至少1名傾向于選擇實(shí)體店”為事件A,則 表示事件“隨機(jī)抽取2名,(其中男、女各一名)都選擇網(wǎng)購”,則P(A)=1﹣P .(2)X的取值為0,1,2,3.P(X=k)= ,即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)為直線上一點(diǎn),過點(diǎn)作的垂線與以為直徑的圓相交于,兩點(diǎn).
(1)若,求圓的方程;
(2)求證:點(diǎn)始終在某定圓上.
(3)是否存在一定點(diǎn)(異于點(diǎn)),使得為常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的導(dǎo)函數(shù),若f(α)=0,f'(α)>0,且f(x)在區(qū)間[α, +α)上沒有最小值,則ω取值范圍是( )
A.(0,2)
B.(0,3]
C.(2,3]
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(14分)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足an>1,其前n項(xiàng)和Sn滿足6Sn=an2+3an+2
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)設(shè)數(shù)列{bn}滿足bn= ,且其前n項(xiàng)和為Tn , 證明: ≤Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒有公共點(diǎn),求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì),某地區(qū)植被覆蓋面積公頃與當(dāng)?shù)貧鉁叵陆档亩葦?shù)之間呈線性相關(guān)關(guān)系,對應(yīng)數(shù)據(jù)如下:
公頃 | 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
請用最小二乘法求出y關(guān)于x的線性回歸方程;
根據(jù)中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少?
參考公式:線性回歸方程;其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地了解鯨的生活習(xí)性,某動物保護(hù)組織在受傷的鯨身上安裝了電子監(jiān)測設(shè)備,從海岸線放歸點(diǎn)處把它放歸大海,并沿海岸線由西到東不停地對其進(jìn)行跟蹤觀測。在放歸點(diǎn)的正東方向有一觀測站,可以對鯨進(jìn)行生活習(xí)性的詳細(xì)觀測。已知,觀測站的觀測半徑為.現(xiàn)以點(diǎn)為坐標(biāo)原點(diǎn)、以由西向東的海岸線所在直線為軸建立平面直角坐標(biāo)系,則可以測得鯨的行進(jìn)路線近似的滿足.
(1)若測得鯨的行進(jìn)路線上一點(diǎn),求的值;
(2)在(1)問的條件下,問:
①當(dāng)鯨運(yùn)動到何處時(shí),開始進(jìn)入觀測站的觀測區(qū)域內(nèi)?(計(jì)算結(jié)果精確到0.1)
②當(dāng)鯨運(yùn)動到何處時(shí),離觀測站距離最近(觀測最便利)?(計(jì)算結(jié)果精確到0.1)
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯(cuò)誤的是( )
A.f(x)的一個(gè)周期為﹣2π
B.y=f(x)的圖象關(guān)于直線x= 對稱
C.f(x+π)的一個(gè)零點(diǎn)為x=
D.f(x)在( ,π)單調(diào)遞減
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com