【題目】在某市組織的一次數(shù)學競賽中全體參賽學生的成績近似服從正態(tài)分布N(60,100),已知成績在90分以上的學生有13人.
(1)求此次參加競賽的學生總數(shù)共有多少人?
(2)若計劃獎勵競賽成績排在前228名的學生,問受獎學生的分數(shù)線是多少?
(參考數(shù)據(jù):若,則;;)
【答案】(1)10000;(2)80
【解析】分析: (1)設出參賽人數(shù)的分數(shù),根據(jù)分數(shù)符合正態(tài)分布,根據(jù)成績在90分以上(含90分)的學生有13名,列出大于90分的學生的概率,成績在90分以上(含90分)的學生人數(shù)約占全體參賽人數(shù)的0.0013,列出比例式,得到參賽的總人數(shù).
(2)設受獎的學生的分數(shù)線為x0.由P(X≥x0)= =0.0228<0.5,可得x0>60.進一步得知P(120-x0<X<x0)=1-2P(X≥x0)=0.9544,即可得x0=60+20=80,故受獎學生的分數(shù)線是80.
詳解:設學生的得分情況為隨機變量X,X~N(60,100).
則μ=60,σ=10.
(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.
∴P(X>90)= [1-P(30<X≤90)]=0.001 3
∴學生總數(shù)為:=10 000(人).
(2)成績排在前228名的學生數(shù)占總數(shù)的0.022 8.設分數(shù)線為x.
則P(X≥x0)=0.022 8.
∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4.
又知P(60-2×10<x<60+2×10)=0.954 4.
∴x0=60+2×10=80(分).
點晴:正態(tài)分布問題,注意三個關鍵點:
(1)對稱軸 ;②標準差 ;③分布區(qū)間。利用對稱性求制定區(qū)間范圍內的概率值。
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎者先從裝有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍球的個數(shù),設一、二、三等獎如下:
獎級 | 摸出紅、藍球個數(shù) | 獲獎金額 |
一等獎 | 3紅1藍 | 200元 |
二等獎 | 3紅0藍 | 50元 |
三等獎 | 2紅1藍 | 10元 |
其余情況無獎且每次摸獎最多只能獲得一個獎級.
(1)求一次摸獎恰好摸到1個紅球的概率;
(2)求摸獎者在一次摸獎中獲獎金額x的分布列與期望E(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC,P0是邊AB上一定點,滿足 ,且對于邊AB上任一點P,恒有 則( )
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
D.AC=BC
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)若為線段的中點,求證:平面;
(3)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
(1)證明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小為60°,求∠BDC的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1<x<6},B={x|2<x<10},C={x|5﹣a<x<a}.
(1)求A∪B,(RA)∩B;
(2)若CB,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】位于濰坊濱海的“濱海之眼”摩天輪是世界上最高的無軸摩天輪,該摩天輪的直徑均為124米,中間沒有任何支撐,摩天輪順時針勻速旋轉一圈需要30分鐘,當乘客乘坐摩天輪到達最高點時,距離地面145米,可以俯瞰白浪河全景,圖中與地面垂直,垂足為點,某乘客從處進入處的觀景艙,順時針轉動分鐘后,第1次到達點,此時點與地面的距離為114米,則( )
A. 16分鐘B. 18分鐘C. 20分鐘D. 22分鐘
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com