【題目】為了調(diào)查患胃病是否與生活不規(guī)律有關(guān),在患胃病與生活不規(guī)律這兩個(gè)分類變量的計(jì)算中,下列說法正確的是(

A. 越大,患胃病與生活不規(guī)律沒有關(guān)系的可信程度越大.

B. 越大,患胃病與生活不規(guī)律有關(guān)系的可信程度越小.

C.若計(jì)算得 ,經(jīng)查臨界值表知 ,則在 個(gè)生活不規(guī)律的人中必有 人患胃病.

D.從統(tǒng)計(jì)量中得知有 的把握認(rèn)為患胃病與生活不規(guī)律有關(guān),是指有 的可能性使得推斷出現(xiàn)錯(cuò)誤.

【答案】D

【解析】

利用獨(dú)立性檢驗(yàn)中反映兩個(gè)變量相關(guān)程度的參數(shù)的定義進(jìn)行判斷即可.

越大,患胃病與生活不規(guī)律沒有關(guān)系的可信程度越小,

患胃病與生活不規(guī)律有關(guān)系的可信程度越大,故選項(xiàng)A,B不正確;

是檢驗(yàn)患胃病與生活不規(guī)律相關(guān)程度的量,是相關(guān)關(guān)系,

而不是確定關(guān)系,是反映有關(guān)和無關(guān)的概率,故選項(xiàng)C不正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).若滿射,滿足:對任意的,,則稱為“和諧函數(shù)”. ,.設(shè)“和諧映射”為滿足條件:存在正整數(shù),使得(1)當(dāng)時(shí),若, ;(2)若 ,,則的最大可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,其中,是函數(shù)定義城內(nèi)任意不相等的兩個(gè)實(shí)數(shù).

1)若,同時(shí),求證:;

2)判斷是否在集合A中,并說明理由;

3)設(shè)函數(shù)的定義域?yàn)?/span>B,函數(shù)的值域?yàn)?/span>C.函數(shù)滿足以下3個(gè)條件:

,②,③.試確定一個(gè)滿足以上3個(gè)條件的函數(shù)要對滿足的條件進(jìn)行說明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;

(2)若對于x∈(0,+∞)都有成立,試求m的取值范圍;

(3)記g(x)=f(x)+x﹣n﹣3.當(dāng)m=1時(shí),函數(shù)g(x)在區(qū)間[e﹣1,e]上有兩個(gè)零點(diǎn),求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分高于省一本線分值對比表:

年份

2015

2016

2017

2018

2019

年份代碼

1

2

3

4

5

錄取平均分高于省一本線分值

28

34

41

47

50

1)根據(jù)上表數(shù)據(jù)可知,之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

2)假設(shè)2020年該省一本線為520分,利用(1)中求出的回歸方程預(yù)測2020年該大學(xué)錄取平均分.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有一個(gè)容量為300噸的水塔,每天從早上6時(shí)起到晚上10時(shí)止供應(yīng)該廠的生產(chǎn)和生活用水.已知該廠生活用水為每小時(shí)10噸,生產(chǎn)用水量(噸)與時(shí)間(單位:小時(shí),且規(guī)定早上6時(shí))的函數(shù)關(guān)系式為:,水塔的進(jìn)水量分為10級,第一級每小時(shí)進(jìn)水10噸,以后每提高一級,每小時(shí)進(jìn)水量就增加10.若某天水塔原有水100噸,在開始供水的同時(shí)打開進(jìn)水管.

1)若進(jìn)水量選擇為級,水塔中剩余水量為噸,試寫出的函數(shù)關(guān)系式;

2)如何選擇進(jìn)水量,既能始終保證該廠的用水(水塔中水不空)又不會(huì)使水溢出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,是等邊三角形,D.E分別是BC.AC上兩點(diǎn),且,AD交于點(diǎn)H,鏈接CH.

1)當(dāng)時(shí),求的值;

2)如圖2,當(dāng)時(shí),__________; __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的最小正周期為,且其圖象關(guān)于直線對稱,則在下面結(jié)論中正確的個(gè)數(shù)是(

①圖象關(guān)于點(diǎn)對稱;

②圖象關(guān)于點(diǎn)對稱;

③在上是增函數(shù);

④在上是增函數(shù);

⑤由可得必是的整數(shù)倍.

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案