【題目】學(xué)校舉辦運動會時,高一(1)班有28名同學(xué)參加比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同時參加游泳和田徑比賽的有3人,同時參加游泳和球類比賽的有3人,沒有人同時參加三項比賽.則同時參加田徑和球類比賽的人數(shù)是( ).

A.3B.4C.5D.6

【答案】A

【解析】

試題只參加游泳比賽的人數(shù):15-3-3=9(人);

同時參加田徑和球類比賽的人數(shù):8+14-28-9=3(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx的圖象與函數(shù)hx=x++2的圖象關(guān)于點A0,1對稱.

1求fx的解析式;

2若gx=x2·[fx-a],且gx在區(qū)間[1,2]上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】機(jī)床廠今年年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.

()寫出y與x之間的函數(shù)關(guān)系式;

()從第幾年開始,該機(jī)床開始盈利(盈利額為正值);

()使用若干年后,對機(jī)床的處理方案有兩種:

(1)當(dāng)年平均盈利額達(dá)到最大值時,以30萬元價格處理該機(jī)床;

(2)當(dāng)盈利額達(dá)到最大值時,以12萬元價格處理該機(jī)床.

請你研究一下哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個正三棱錐的零件,P是側(cè)面ACD上的一點.

過點P作一個與棱AB垂直的截面,怎樣畫法?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形,將 沿矩形的對角線 所在的直線進(jìn)行翻折,在翻折過程中 (  )

A. 存在某個位置,使得直線與直線垂直

B. 存在某個位置,使得直線與直線垂直

C. 存在某個位置,使得直線與直線垂直

D. 對任意位置,三對直線“”,“”,“”均不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健步走是一種方便而又有效的鍛煉方式,李老師每天堅持健步走,并用計步器進(jìn)行統(tǒng)計.他最近8天健步走步數(shù)的條形統(tǒng)計圖及相應(yīng)的消耗能量數(shù)據(jù)表如下:

(1)求老師這8天健步走步數(shù)的平均數(shù);

(2)從步數(shù)為16千步,17千步,18千步的6天中任選2天,設(shè)李老師這2天通過健步走消耗的能量和為,的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ax2-2x+1.

1當(dāng),試討論函數(shù)fx的單調(diào)性;

2≤a≤1,且fx在[1,3]上的最大值為Ma,最小值為Na,令ga=Ma-Na,求ga的表達(dá)式;

32的條件下,求ga的最.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過1mm時,則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差單位:mm,將所得數(shù)據(jù)分組,得到如下頻率分布表:

1將上面表格中缺少的數(shù)據(jù)填在相應(yīng)位置上;

2估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間1,3]內(nèi)的概率;

3現(xiàn)對該廠這種產(chǎn)品的某個批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在三角形中,為其中位線,且,若沿將三角形折起,使,構(gòu)成四棱錐,且

1求證:平面 平面;

2當(dāng) 異面直線所成的角為時,求折起的角度

查看答案和解析>>

同步練習(xí)冊答案