【題目】下列說(shuō)法錯(cuò)誤的是 (  )

A. 多面體至少有四個(gè)面

B. 九棱柱有9條側(cè)棱9個(gè)側(cè)面,側(cè)面為平行四邊形

C. 長(zhǎng)方體、正方體都是棱柱

D. 三棱柱的側(cè)面為三角形

【答案】D

【解析】三棱柱的側(cè)面是平行四邊形,故D錯(cuò)誤. 選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤(rùn)元;未售出的產(chǎn)品,每盒虧損.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的中位數(shù);

2)將表示為的函數(shù);

3)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在區(qū)間[-1,4]上有最大值10和最小值1.設(shè)

1的值;

2證明:函數(shù)上是增函數(shù).

3若不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足以下兩個(gè)條件:

不等式的解集是;函數(shù)上的最小值是3.

1的解析式;

2若點(diǎn)在函數(shù)的圖象上,且

i求證:數(shù)列為等比數(shù)列;

ii,是否存在正整數(shù),使得取到最小值?若有,請(qǐng)求出的值;若無(wú),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面α⊥平面βαβn,直線lα,直線mβ,則下列說(shuō)法正確的個(gè)數(shù)是(  )

①若ln,lm,則lβ;②若ln,則lβ;③若mn,lm,則mα.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班有學(xué)生60人,現(xiàn)將所有學(xué)生按1,2, 3,…,60隨機(jī)編號(hào),若采用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本(等距抽樣),已知編號(hào)為3, 33, 48號(hào)學(xué)生在樣本中,則樣本中另一個(gè)學(xué)生的編號(hào)為( )

A. 28 B. 23 C. 18 D. 13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下面對(duì)幾何體結(jié)構(gòu)特征的描述,說(shuō)出幾何體的名稱.

(1)8個(gè)面圍成,其中2個(gè)面是互相平行且全等的六邊形其他各面都是平行四邊形.

(2)5個(gè)面圍成,其中一個(gè)是正方形,其他各面都是有1個(gè)公共頂點(diǎn)的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)镈,如果,使得成立,則稱函數(shù)“Ω函數(shù). 給出下列四個(gè)函數(shù):;;, 則其中“Ω函數(shù)共有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位建造一間地面面積為12 m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度x不得超過(guò)a m,房屋正面的造價(jià)為400元/m2,房屋側(cè)面的造價(jià)為150元/m2,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3 m,且不計(jì)房屋背面的費(fèi)用當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案