【題目】如圖所示,在四邊形中:,,,,.點為四邊形的外接圓劣弧(不含)上一動點.

1)證明:

2)若,設(shè),,求的最小值.

【答案】1)詳見解析;(2.

【解析】

1)由余弦定理求得,再根據(jù),求得,最后根據(jù)三邊長度判斷是否滿足勾股定理;

2)設(shè),作平行于且交,則四邊形為平行四邊形,由平面向量基本定理和正弦定理表示,再根據(jù)三角恒等變形求的最小值.

解:(1)在中,由余弦定理知:

所以,又因為,所以

所以分別為方程的兩根,

因為,所以

所以,所以

2)因為,所以是四邊形的外接圓的直徑,

所以四邊形為矩形,連接,

設(shè),作平行于且交,則四邊形為平行四邊形,

所以,又因為,

由平面向量基本定理知:,所以

中,因為,,所以

由正弦定理知:,所以

中,

所以,

所以

因為,所以,所以

所以,當(dāng)時,取最小值,最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機(jī)摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,部分對應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示,給出關(guān)于的下列命題:

①函數(shù)處取得極小值;

②函數(shù)是減函數(shù),在是增函數(shù);

③當(dāng)時,函數(shù)有4個零點;

④如果當(dāng)時,的最大值是2,那么的最小值為0.

其中所有的正確命題是__________(寫出正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機(jī)床同時生產(chǎn)一種零件,在天中,兩臺機(jī)床每天生產(chǎn)的次品數(shù)分別為:

甲:;乙:

1)分別求兩組數(shù)據(jù)的眾數(shù)、中位數(shù);

2)根據(jù)兩組數(shù)據(jù)平均數(shù)和標(biāo)準(zhǔn)差的計算結(jié)果比較兩臺機(jī)床性能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD中,PBC為正三角形,AB⊥平面PBC,ABCD,AB=DC, .

(1)求證:AE∥平面PBC;

(2)求證:AE⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會有名同學(xué),成員構(gòu)成如下表,其中表中部分?jǐn)?shù)據(jù)不清楚,只知道從這名同學(xué)中隨機(jī)抽取一位,抽到該名同學(xué)為數(shù)學(xué)專業(yè)的概率為.

性別 專業(yè)

中文

英語

數(shù)學(xué)

體育

現(xiàn)從這名同學(xué)中隨機(jī)抽取名同學(xué)參加社會公益活動(每位同學(xué)被選到的可能性相同).

Ⅰ)求的值;

Ⅱ)求選出的名同學(xué)恰為專業(yè)互不相同的男生的概率;

Ⅲ)設(shè)為選出的名同學(xué)中女生或數(shù)學(xué)專業(yè)的學(xué)生的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}為遞增的等差數(shù)列,數(shù)列{bn}滿足bnanan+1an+2nN*),設(shè)Sn為數(shù)列{bn}的前n項和,若a2,則當(dāng)Sn取得最小值時n的值為(

A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率是,過點的動直線于橢圓相交于兩點,當(dāng)直線平行于軸時,直線被橢圓截得弦長為

(Ⅰ)求的方程;

(Ⅱ)在上是否存在與點不同的定點,使得直線的傾斜角互補?若存在,求的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案