設(shè)m>3,對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,…ak(k≤m)中最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1,2,…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.若m=4,則創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn} 為________.

3,4,2,1或3,4,1,2
分析:由題意可得,創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn}的第一項是3,第二項是4,接下來的第三項和第四項是1或2,從而寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn}.
解答:由題意可得,創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn}有兩個,即3,4,1,2和3,4,2,1.
故答案為:3,4,2,1或3,4,1,2.
點評:本題主要考查數(shù)列的函數(shù)特性,創(chuàng)新數(shù)列的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m>3,對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,…ak(k≤m)中最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1,2,…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.若m=4,則創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn} 為
3,4,2,1或3,4,1,2
3,4,2,1或3,4,1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青浦區(qū)一模)設(shè)m>3,對于項數(shù)m的有窮數(shù)列{an},令bk為a1,a2,…,ak(k≤m)中最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1,2,…,m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.
(1)若m=4,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn};
(2)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列{cn}的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)設(shè)m>3,對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,a3…ak(k≤m)中的最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1、2…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.
(Ⅰ)若m=5,寫出創(chuàng)新數(shù)列為3,5,5,5,5的所有數(shù)列{cn};
(Ⅱ)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由;
(Ⅲ)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有符合條件的數(shù)列{cn}的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年北京市房山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)m>3,對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,a3…ak(k≤m)中的最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1、2…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.
(Ⅰ)若m=5,寫出創(chuàng)新數(shù)列為3,5,5,5,5的所有數(shù)列{cn};
(Ⅱ)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由;
(Ⅲ)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有符合條件的數(shù)列{cn}的個數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案