【題目】已知為直角坐標系的坐標原點,雙曲線 上有一點),點軸上的射影恰好是雙曲線的右焦點,過點作雙曲線兩條漸近線的平行線,與兩條漸近線的交點分別為 ,若平行四邊形的面積為1,則雙曲線的標準方程是( )

A. B. C. D.

【答案】A

【解析】設平行線方程為,由,解得,則,又點到直線的距離,化簡得: ,又,又,解得,所以方程是,故選A.

【方法點晴】本題主要考查雙曲線的簡單性質(zhì)、雙曲線的漸近線及待定系數(shù)法求雙曲線方程,屬于中檔題.求解與雙曲線性質(zhì)有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內(nèi)在聯(lián)系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是正項數(shù)列的前項和,滿足,.

)求數(shù)列通項公式;

)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了解2017屆高三學生的性別和喜愛游泳是否有關,對100名高三學生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為

(Ⅰ)請將上述列聯(lián)表補充完整;

(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,點D,E分別是邊AB,AC上的一點,且滿足AD= AB,AE= AC,若BE⊥CD,則cosA的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , 分別是棱, , 的中點,點, 分別在棱, 上移動,且.

(1)當時,證明:直線平面

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是正數(shù)組成的數(shù)列, ,且點 在函數(shù)的圖象上.

(1)求數(shù)列的通項公式;

(2)若列數(shù)滿足,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!.

(1)完成下面列聯(lián)表,并判斷是否有的把握認為“空間想象能力突出”與性別有關;

空間想象能力突出

空間想象能力正常

合計

男生

女生

合計

(2)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

下面公式及臨界值表僅供參考:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且,則不能等于(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以為極點, 軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,(

(1)寫出直線經(jīng)過的定點的直角坐標,并求曲線的普通方程;

(2)若,求直線的極坐標方程,以及直線與曲線的交點的極坐標.

查看答案和解析>>

同步練習冊答案