【題目】某購物網(wǎng)站開展一種商品的預(yù)約購買,規(guī)定每個手機(jī)號只能預(yù)約一次,預(yù)約后通過搖號的方式?jīng)Q定能否成功購買到該商品.規(guī)則如下:(。⿹u號的初始中簽率為;(ⅱ)當(dāng)中簽率不超過時,可借助“好友助力”活動增加中簽率,每邀請到一位好友參與“好友助力”活動可使中簽率增加.為了使中簽率超過,則至少需要邀請________位好友參與到“好友助力”活動.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面平面ABC,P、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為,是邊長為2的正三角形,,,.
(1)求證:面平面PAB;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線:.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線上有一動點,曲線上有一動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),是的導(dǎo)數(shù).
(1)當(dāng)時,令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點;
(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將1,2,3,……,9這9個數(shù)全部填入如圖所示的3×3方格內(nèi),每個格內(nèi)填一個數(shù),則使得每行中的數(shù)從左至右遞增,每列中的數(shù)從上至下遞減的不同填法共有( )種
A.12B.24C.42D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)判斷函數(shù)的零點的個數(shù),并說明理由;
(3)設(shè)是的一個零點,證明曲線在點處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,左,右焦點分別為,上頂點為A,是面積為4的直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過作直線與橢圓交于P,Q兩點,若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PB⊥平面ABCD,AB⊥BC,AD∥BC,AD=2BC=2,AB=BC=PB,點E為棱PD的中點.
(1)求證:CE∥平面PAB;
(2)求證:AD⊥平面PAB;
(3)求二面角E﹣AC﹣D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com