設(shè)數(shù)列{bn}滿足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在實(shí)數(shù)p,q,對任意n∈N*都有pT1T2T3+…+Tnq成立,試求qp的最小值.

(1)b1=-1(2)見解析(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)為加大對新產(chǎn)品的推銷力度,決定從今年起每年投入100萬元進(jìn)行廣告宣傳,以增加新產(chǎn)品的銷售收入.已知今年的銷售收入為250萬元,經(jīng)市場調(diào)查,預(yù)測第n年與第n-1年銷售收入an與an-1(單位:萬元)滿足關(guān)系式:an=an-1-100.
(1)設(shè)今年為第1年,求第n年的銷售收入an;
(2)依上述預(yù)測,該企業(yè)前幾年的銷售收入總和Sn最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

各項(xiàng)均為正數(shù)的數(shù)列{an}中,設(shè),且,
(1)設(shè),證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè),求集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,對一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且在點(diǎn)Pn(n,Sn)處的切線的斜率為kn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2knan,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足a1=3,an+1anp·3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn,證明:bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均不為零的數(shù)列,其前n項(xiàng)和滿足;等差數(shù)列,且的等比中項(xiàng)
(1)求
(2)記,求的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中滿足.
(1)求和公差
(2)求數(shù)列的前10項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和,求證:是等比數(shù)列,并求出通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是公比為的等比數(shù)列,且成等差數(shù)列.
⑴求q的值;
⑵設(shè)是以2為首項(xiàng),為公差的等差數(shù)列,其前項(xiàng)和為,當(dāng)n≥2時(shí),比較 與的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案