【題目】某工廠預購軟件服務,有如下兩種方案:

方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;

方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.

(1)設日收費為元,每天軟件服務的次數(shù)為,試寫出兩種方案中的函數(shù)關系式;

(2)該工廠對過去100天的軟件服務的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

【答案】(1) .(2) 從節(jié)約成本的角度考慮,選擇方案一.

【解析】

1)根據(jù)題中條件,建立等量關系,即可得出所需函數(shù)關系;

2)分別設兩種方案的日收費為,,由題中條形圖,得到,的分布列,求出對應期望,比較大小,即可得出結果.

(1)由題可知,方案一中的日收費的函數(shù)關系式為

方案二中的日收費的函數(shù)關系式為 .

(2)設方案一種的日收費為,由條形圖可得的分布列為

190

200

210

220

230

0.1

0.4

0.1

0.2

0.2

所以(元)

方案二中的日收費為,由條形圖可得的分布列為

200

220

240

0.6

0.2

0.2

(元)

所以從節(jié)約成本的角度考慮,選擇方案一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】閱讀下列有關光線的入射與反射的兩個事實現(xiàn)象:現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖);現(xiàn)象(2);光線從橢圓的一個焦點出發(fā)經(jīng)橢圓反射后通過另一個焦點(如圖).試結合,上述事實現(xiàn)象完成下列問題:

(Ⅰ)有一橢圓型臺球桌,長軸長為2a,短軸長為2b.將一放置于焦點處的桌球擊出.經(jīng)過球桌邊緣的反射(假設球的反射充全符合現(xiàn)象(2)),后第一次返回到該焦點時所經(jīng)過的路程記為S,求S的值(用ab表示);

(Ⅱ)結論:橢圓上任點Px0,y0)處的切線的方程為.記橢圓C的方程為C,在直線x4上任一點M向橢圓C引切線,切點分別為A,B.求證:直線lAB恒過定點:

(Ⅲ)過點T1,0)的直線l(直線l斜率不為0)與橢圓C交于P、Q兩點,是否存在定點Ss,0),使得直線SPSQ斜率之積為定值,若存在求出S坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直棱柱中,分別是棱,上的點,且平面

1)證明:

2)若中點,求直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,PA=PD=CD=BC=1.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若函數(shù)存在唯一的零點,且,則的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。

1)求數(shù)列的通項公式;

2)設,求數(shù)列的最大項的值與最小項的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

以平面直角坐標系xOy的原點為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線l的坐標方程為,曲線C的參數(shù)方程為(θ為參數(shù)).

(1)求直線l的直角坐標方程和曲線C的普通方程;

(2)以曲線C上的動點M為圓心、r為半徑的圓恰與直線l相切,求r的最小值.

查看答案和解析>>

同步練習冊答案