【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差/攝氏度 | |||||
發(fā)芽數(shù)/顆 |
該農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是不相鄰天的數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)月日至日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得試的線性回歸方程是否可靠?
附:
【答案】(1);(2)答案見解析.
【解析】分析:(1)設(shè)抽到不相鄰兩組數(shù)據(jù)為事件,由題意結(jié)合對(duì)立事件計(jì)算公式可得.
(2)由數(shù)據(jù),求得,,則回歸方程為.當(dāng)時(shí),,;當(dāng)時(shí),,.則該研究所得到的線性回歸方程是可靠的.
詳解:(1)設(shè)抽到不相鄰兩組數(shù)據(jù)為事件,因?yàn)閺?/span>組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩組數(shù)據(jù)的情況有種,
所以.
(2)由數(shù)據(jù),求得,
,
由公式,可得,
.
所以,,
所以關(guān)于的線性回歸方程是.
當(dāng)時(shí),,;
同樣,當(dāng)時(shí),,.
所以該研究所得到的線性回歸方程是可靠的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正四面體的“骰子”(四個(gè)面分別標(biāo)有1,2,3,4四個(gè)數(shù)字),擲一次“骰子”三個(gè)側(cè)面的數(shù)字的和為“點(diǎn)數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點(diǎn)數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點(diǎn)數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣4a|(a>0),若對(duì)x∈R,都有f(2x)﹣1≤f(x),則實(shí)數(shù)a的最大值為( 。
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 ,使 恒成立,命題 使函數(shù) 有零點(diǎn), 若命題“ ”是真命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)兩個(gè)共軛復(fù)數(shù)的差是純虛數(shù);(2)兩個(gè)共軛復(fù)數(shù)的和不一定是實(shí)數(shù);(3)若復(fù)數(shù)a+bi(a,b∈R)是某一元二次方程的根,則a﹣bi是也一定是這個(gè)方程的根;(4)若z為虛數(shù),則z的平方根為虛數(shù),
其中正確的個(gè)數(shù)為( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn),邊上的中線所在直線方程為,的角平分線所在直線方程為.
(I)求頂點(diǎn)的坐標(biāo);
(II)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),若對(duì)任意,有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一學(xué)生共有500人,為了了解學(xué)生的歷史學(xué)習(xí)情況,隨機(jī)抽取了50名學(xué)生,對(duì)他們一年來4次考試的歷史平均成績(jī)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補(bǔ)全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點(diǎn)值(例如區(qū)間[70,80)的中點(diǎn)值是
75作為代表,試估計(jì)該校高一學(xué)生歷史成績(jī)的平均分;
(3)估計(jì)該校高一學(xué)生歷史成績(jī)?cè)?0~100分范圍內(nèi)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com