【題目】已知數(shù)列,其中.
(1)若滿足.
①當(dāng),且時(shí),求的值;
②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值.
(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前n項(xiàng)和為,,,若,,且恒成立,求的最小值.
【答案】(1)①8②1;(2)5
【解析】
(1)①由遞推公式直接計(jì)算;②時(shí)數(shù)列等差數(shù)列,滿足題意,時(shí),利用累加法求出通項(xiàng)(用表示),假設(shè)存在,由判斷出只有,故此時(shí)無解,從而得;
(2)根據(jù)得的遞推關(guān)系,注意驗(yàn)證也滿足,再由得的遞推關(guān)系,然后變形為,從而時(shí),此式值為5,再計(jì)算時(shí),,可得最小值為5.
(1)由,,,累加得
(2)①因,所以,,,當(dāng)時(shí),,滿足題意;
當(dāng)時(shí),累加得,所以
若存在滿足條件,化簡得,即,
此時(shí)(舍去)
綜上所述,符合條件的值為1
(2)由可知,兩式作差可得:,又由,可知故,所以對(duì)一切的恒成立
對(duì),兩式進(jìn)行作差可得,
又由可知,故
又由
,所以 ,
所以當(dāng)時(shí),當(dāng)時(shí),故的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橋牌是一種高雅、文明、競技性很強(qiáng)的智力性游戲.近年來,在中國橋牌協(xié)會(huì)“橋牌進(jìn)校園”活動(dòng)的號(hào)召下,全國各地中小學(xué)紛紛積極加入到青少年橋牌推廣的大營中.為了了解學(xué)生對(duì)橋牌這項(xiàng)運(yùn)動(dòng)的興趣,某校從高一學(xué)生中隨機(jī)抽取了200名學(xué)生進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)之比為2:3,男生中有50人對(duì)橋牌有興趣,女生中有20人對(duì)橋牌不感興趣.
(1)完成2×2列聯(lián)表,并回答能否有的把握認(rèn)為“該校高一學(xué)生對(duì)橋牌是否感興趣與性別有關(guān)”?
感興趣 | 不感興趣 | 合計(jì) | |
男 | 50 | —— | —— |
女 | —— | 20 | —— |
合計(jì) | —— | —— | 200 |
(2)從被調(diào)查的對(duì)橋牌有興趣的學(xué)生中利用分層抽樣抽取6名學(xué)生,再從6名學(xué)生中抽取2名學(xué)生作為橋牌搭檔參加雙人賽.求抽到一名男生與一名女生的概率.
附:參考公式,其中.
臨界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任取一個(gè)自然數(shù),如果它是偶數(shù),我們就把它除以2,如果它是奇數(shù),我們就把它乘3再加上1,在這樣的變換下,我們就得到一個(gè)新的自然數(shù).如果反復(fù)使用這個(gè)變換,我們就會(huì)得到一串自然數(shù),最終我們都會(huì)陷在4→2→1這個(gè)循環(huán)中,這就是世界數(shù)學(xué)名題“3x+1問題”.如圖所示的程序框圖的算法思路源于此,執(zhí)行該程序框圖,若N=6,則輸出的i=( )
A.6B.7C.8D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為的導(dǎo)函數(shù).
(1)討論的單調(diào)性;
(2)若,當(dāng)時(shí),求證:有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線:(為參數(shù)),曲線:(為參數(shù)),且,點(diǎn)P為曲線與的公共點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為,求動(dòng)點(diǎn)P到直線l的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位戰(zhàn)士參加射擊比賽訓(xùn)練.從若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲82 81 79 78 95 88 93 84
乙92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù),并分別求兩組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)要從中選派一人參加射擊比賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位戰(zhàn)士參加合適?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a=2,_______,求△ABC的周長l的范圍.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并對(duì)其進(jìn)行求解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上頂點(diǎn)為A,右焦點(diǎn)為F,O是坐標(biāo)原點(diǎn),是等腰直角三角形,且周長為.
(1)求橢圓的方程;
(2)若直線l與AF垂直,且交橢圓于B,C兩點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com