【題目】已知以為焦點的拋物線過點,直線交于兩點,中點,且.

1)當時,求點的坐標;

2)當時,求直線的方程.

【答案】1;(2.

【解析】

1)將代入拋物線方程,求得的值,根據(jù)向量的坐標運算,即可求得的值;

2)方法一:根據(jù)向量的坐標運算,求得的縱坐標,利用拋物線的“點差法”求得直線的斜率,代入拋物線方程,利用韋達定理及向量的坐標運算,即可求得直線的方程;

方法二:設(shè)直線的方程,代入拋物線方程,利用韋達定理,中點坐標公式,及向量的坐標運算,即可求得直線的方程.

解:(1)將代入拋物線方程,得,

所以的方程為,焦點,

設(shè),,當時,,可得

2)方法一:設(shè),,,,,

.可得,,,所以,

所以直線的斜率存在且斜率,

設(shè)直線的方程為,聯(lián)立,消去,

整理得,

,可得,

,,,

所以

解得,(舍,

所以直線的方程為

方法二:設(shè)直線的方程為

設(shè),,,,,

聯(lián)立方程組,消去,

整理得,△,

,

,

,由

,,,所以,

所以直線的方程為,

由△,可得,

,得,

所以,

解得,(舍去)

所以直線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機抽取40人進行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.

1)將答題卡上的列聯(lián)表補充完整;

2)判斷是否有的把握認為對這種口罩的了解與否與年齡有關(guān).

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,

求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學家、天文歷算家,在他多達百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學者王子。他對文藝的最大貢獻是他創(chuàng)建了“十二平均律”,此理論被廣泛應用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽為“鋼琴理論的鼻祖”。“十二平均律”是指一個八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐SABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3

1)求直線AS與平面ABCD所成角的正弦值;

2)若線段CD上能找到點E,滿足AESE,則λ可能的取值有幾種情況?請說明理由;

3)在(2)的條件下,當λ為所有可能情況的最大值時,線段CD上滿足AESE的點有兩個,分別記為E1,E2,求二面角E1SBE2的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一盒中裝有12個球,其中5個紅球,4個黑球,2個白球,1個綠球.從中隨機取出1球,求:

(1)取出1球是紅球或黑球的概率;

(2)取出1球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

同步練習冊答案