【題目】已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.
(1)設直線,的斜率分別為,,求證:常數(shù);
(2)①設的內切圓圓心為的半徑為,試用表示點的橫坐標;
②當的內切圓的面積為時,求直線的方程.
【答案】(1)證明見解析;(2)①;②.
【解析】
(1)設過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達定理表示出,化簡即可;
(2)由(1)知點在軸上,故,設出直線方程,求出交點坐標,因為內心到三角形各邊的距離相等且均為內切圓半徑,列出方程組求解即可.
(1)設過的直線交拋物線于,,
聯(lián)立方程組,得:.
于是,有:
,
又,
;
(2)①由(1)知點在軸上,故,聯(lián)立的直線方程:.
,又點在拋物線上,得,
又,
;
②由題得,
(解法一)
所以直線的方程為
(解法二)
設內切圓半徑為,則.設直線的斜率為,則:
直線的方程為:代入直線的直線方程,
可得
于是有:
得,
又由(1)可設內切圓的圓心為則,
即:,解得:
所以,直線的方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列的前項和為,數(shù)列滿足:,,當時,,且,,成等比數(shù)列,.
(1)求數(shù)列,的通項公式;
(2)求證:數(shù)列中的項都在數(shù)列中;
(3)將數(shù)列、的項按照:當為奇數(shù)時,放在前面:當為偶數(shù)時,放在前面進行“交叉排列”,得到一個新的數(shù)列:,,,,,,…這個新數(shù)列的前和為,試求的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項公式.
(2)設,若數(shù)列是等差數(shù)列,求實數(shù)的值;
(3)在(2)的條件下,設 記數(shù)列的前項和為,若對任意的存在實數(shù),使得,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線,切點A是BD的中點,AC、BD相交于點E,AB、PE相交于點F,直線CF交⊙O于另一點G、交PA于點K.
證明:(1)K是PA的中點;(2)..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在實數(shù),,使不等式對一切正數(shù)都成立(其中為自然對數(shù)的底數(shù)),則實數(shù)的最小值是( ).
A.B.4C.D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種設備隨著使用年限的增加,每年的維護費相應增加現(xiàn)對一批該設備進行調查,得到這批設備自購入使用之日起,前5年平均每臺設備每年的維護費用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
維護費(萬元) | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在這5年中隨機抽取兩年,求平均每臺設備每年的維護費用至少有1年多于2萬元的概率;
(2)求關于的線性回歸方程.若該設備的價格是每臺16萬元,你認為應該使用滿五年換一次設備,還是應該使用滿八年換一次設備?請說明理由.
參考公式:用最小二乘法求線性回歸方程的系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計結果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.
(Ⅰ)試確定, 的值,并估計每日應準備紀念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀念品的數(shù)量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“”是“點到直線的距離為3”的充要條件
B.直線的傾斜角的取值范圍為
C.直線與直線平行,且與圓相切
D.離心率為的雙曲線的漸近線方程為
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com