【題目】已知圓.
(1)若圓的切線在軸和軸上的截距相等,求此切線的方程.
(2)從圓外一點向該圓引一條切線,切點為, 為坐標(biāo)原點,且有,求使得取得最小值的點的坐標(biāo).
【答案】(1)或或;(2)
【解析】試題分析:(1)將圓的方程化為標(biāo)準(zhǔn)形式,當(dāng)切線過原點時:設(shè)切線方程為,根據(jù)圓心到切線的距離等于半徑求出的值,即得切線方程;當(dāng)切線不過原點時:設(shè)切線方程為,同理可得的值,從而得到圓的所有的切線方程.
(2)有切線的性質(zhì)可得|PM|2=|PC|2-|CM|2,又|PM|=|PO|,可得2x0-4y0+3=0.動點P在直線2x-4y+3=0上,|PM|的最小值就是|PO|的最小值,過點O作直線2x-4y+3=0的垂線,垂足為P,垂足坐標(biāo)即為所求
試題解析:(1)圓,所以圓心.①切線過原點,由題知,此時切線斜率必定存在,設(shè).則,解得或.②切線不過原點,設(shè),則,解得或.綜上所述:切線方程為或或.
(2)因為,且,即,整理得,則,所以.當(dāng)時, ,此時.綜上所述為時, 最小,最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于維向量,若對任意均有或,則稱為維向量. 對于兩個維向量定義.
(1)若, 求的值;
(2)現(xiàn)有一個維向量序列: 若且滿足: ,求證:該序列中不存在維向量.
(3) 現(xiàn)有一個維向量序列: 若且滿足: ,若存在正整數(shù)使得為維向量序列中的項,求出所有的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最大值和最小值;
(2)設(shè)曲線與軸正半軸的交點為處的切線方程為,求證:對于任意的正實數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,an+1= Sn . 求證:
(1)數(shù)列{ }成等比;
(2)Sn+1=4an .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,圓,圓心到拋物線準(zhǔn)線的距離為3,點是拋物線在第一象限上的點,過點作圓的兩條切線,分別與軸交于兩點.
(1)求拋物線的方程;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,橢圓 的離心率為是橢圓的右焦點,直線的斜率為為坐標(biāo)原點.
(1)求的方程;
(2)設(shè)過點的動直線與相交于兩點,當(dāng)的面積最大時,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過直角坐標(biāo)平面xOy中的拋物線y2=2px(p>0)的焦點F作一條傾斜角為的直線與拋物線相交于A,B兩點.
(1)用p表示線段AB的長;
(2)若,求這個拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)若曲線在點處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));
(2)若對任意恒成立,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com