【題目】已知函數(shù)y=f(x)在定義域(﹣ ,3)內(nèi)可導(dǎo),其圖像如圖所示.記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式 ≤0的解集為 .
【答案】[2,3]∪[﹣ ,﹣ ]
【解析】解:不等式 ≤0,等價于 ①,或 ②.
由y=f(x)圖像可知f(x)在[﹣ ,1]、[2,3]內(nèi)遞減,f′(x)≤0;
f(x)在[﹣ ,﹣ ]、[1,2]內(nèi)遞增,f′(x)≥0.
故由①可得x∈[2,3],由②可得x∈[﹣ ,﹣ ].
綜上可得,不等式 ≤0的解集為[2,3]∪[﹣ ,﹣ ],
所以答案是:[2,3]∪[﹣ ,﹣ ].
【考點精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的性質(zhì)(函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集),還要掌握導(dǎo)數(shù)的幾何意義(通過圖像,我們可以看出當(dāng)點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當(dāng)點趨近于時,函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),則△ABC必是( )
A.等腰三角形
B.直角三角形
C.等腰或直角三角形
D.等腰直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè) ,
(1)若F(x)圖像在x=0處的切線方程為x﹣y=0,求b、c的值;
(2)若函數(shù)F(x)是(﹣∞,+∞)上單調(diào)遞減,則 ①當(dāng)x≥0時,試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對滿足題設(shè)條件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義在[﹣1,2]上的函數(shù)f(x)的圖象為折線段ACB,
(1)求函數(shù)f(x)的解析式;
(2)請用數(shù)形結(jié)合的方法求不等式f(x)≥log2(x+1)的解集,不需要證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線方程為, (其中為常數(shù)).
(1)求函數(shù)的解析式;
(2)若對任意,不等式恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,求證: (其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某扇形的面積為4cm2 , 周長為8cm,則此扇形圓心角的弧度數(shù)是;若點(a,9)在函數(shù)y=3x的圖象上,則不等式 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,,是橢圓:()的四個頂點,四邊形是圓:的外切平行四邊形,其面積為.橢圓的內(nèi)接的重心(三條中線的交點)為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)的面積是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com