精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求證: a∈R,且a≠0成立.

【答案】
(1)解:當x≤﹣1時,不等式f(x)≤x+2為:1﹣x﹣x﹣1≤x+2,解得x≥﹣ (舍);

當﹣1<x≤1時,不等式f(x)≤x+2為:1﹣x+x+1≤x+2,解得x≥0,∴0≤x≤1;

當x>1時,不等式f(x)≤x+2為:x﹣1+x+1≤x+2,解得x≤2,∴1<x≤2.

綜上,f(x)≤x+2的解集為{x|0≤x≤2}


(2)解:∵g(x)=|x+ |+|x﹣ |≥|x+ ﹣x+ |=3,

≤|1+ +2﹣ |=3,

a∈R,且a≠0成立


【解析】(1)討論x的范圍,去掉絕對值符號解出;(2)利用絕對值不等式的性質轉化得出.
【考點精析】認真審題,首先需要了解不等式的證明(不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構造法,函數單調性法,數學歸納法等).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A,B,C所對的邊分別為a,b,c,下列四個命題中不正確的命題是( )

A.,則△ABC一定是等邊三角形

B.,則△ABC一定是銳角三角形

C.,則△ABC一定是等腰三角形

D.,則△ABC一定是等腰三角形或直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇. 方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為 ,第一次抽獎,若未中獎,則抽獎結束,若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進行抽獎,哪個方案更劃算?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中正確的是 ( )

①相關系數用來衡量兩個變量之間線性關系的強弱越接近于,相關性越弱;

②回歸直線一定經過樣本點的中心

③隨機誤差滿足,其方差的大小用來衡量預報的精確度;

④相關指數用來刻畫回歸的效果, 越小,說明模型的擬合效果越好.

A. ①② B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,,,

(1)證明:點在底面上的射影必在直線上;

(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某零售店近5個月的銷售額和利潤額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤額/百萬元

2

3

3

4

5

(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關關系;

(2)用最小二乘法計算利潤額關于銷售額的回歸直線方程;

(3)當銷售額為4千萬元時,利用(2)的結論估計該零售店的利潤額(百萬元).

[參考公式:,]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應國建“精準扶貧,產業(yè)扶貧”的戰(zhàn)略,某市面向全國征召《扶貧政策》義務宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示
(1)求圖中x的值
(2)在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人,記這3名志愿者中“年齡低于35歲”的人數為Y,求Y的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】min(a,b)表示a,b中的最小值,執(zhí)行如圖所示的程序框圖,若輸入的a,b值分別為4,10,則輸出的min(a,b)值是(
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據以往經驗某選手投擲一次命中8環(huán)以上的概率為 .現采用計算機做模擬實驗來估計該選手獲得優(yōu)秀的概率:用計算機產生0到9之間的隨機整數,用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經隨機模擬試驗產生了如下 20 組隨機數: 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
據此估計,該選手投擲 1 輪,可以拿到優(yōu)秀的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案