【題目】已知函數(shù).

(1)若,,且恒成立,求實(shí)數(shù)的取值范圍;

(2)若,且函數(shù)在區(qū)間上是單調(diào)遞減函數(shù).

①求實(shí)數(shù)的值;

②當(dāng)時(shí),求函數(shù)的值域.

【答案】(1);(2)

【解析】

試題(1)先利用參變分離將不等式化為函數(shù)最值:的最大值,再利用導(dǎo)數(shù)求函數(shù)最值,即得實(shí)數(shù)的取值范圍;(2)①將單調(diào)性條件轉(zhuǎn)化為對(duì)恒成立,再根據(jù)二次函數(shù)恒成立條件得不等式,解不等式可得實(shí)數(shù)的值;②先利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)值域,再結(jié)合圖像確定,根據(jù)圖像確定值域.

試題解析:(1)函數(shù)的定義域?yàn)?/span>.當(dāng),,

恒成立,∴恒成立,即.

,則 ,

,得,∴上單調(diào)遞增,

,得,∴上單調(diào)遞減,

∴當(dāng)時(shí),,∴.

(2)①當(dāng)時(shí),,.

由題意,對(duì)恒成立,

,∴,即實(shí)數(shù)的值為.

②函數(shù)的定義域?yàn)?/span>.

當(dāng),,時(shí),.

,令,得.

-

+

極小值

∴當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),.

對(duì)于,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),.

∴當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),.

故函數(shù)的值域?yàn)?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)設(shè)函數(shù),討論函數(shù)在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù);

2)若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且 ,在數(shù)列中,,點(diǎn)在直線上.

(1)求數(shù)列,的通項(xiàng)公式;

(2)記,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為橢圓的右焦點(diǎn),點(diǎn)在橢圓上,已知橢圓的離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過右焦點(diǎn)的直線與橢圓相交于,兩點(diǎn),記三條邊所在直線的斜率的乘積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形, 垂直于底面, ,點(diǎn)為線段(不含端點(diǎn))上一點(diǎn).

(1)當(dāng)是線段的中點(diǎn)時(shí),求與平面所成角的正弦值;

(2)已知二面角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),若關(guān)于的不等式恒成立,求的取值范圍;

(2)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在RtABC中,已知點(diǎn)A-2,0,直角頂點(diǎn)B0-2,點(diǎn)Cx軸上

1Rt△ABC外接圓的方程;

2求過點(diǎn)-4,0且與Rt△ABC外接圓相切的直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié),搶紅包成為社會(huì)熱議的話題之一.某機(jī)構(gòu)對(duì)春節(jié)期間用戶利用手機(jī)搶紅包的情況進(jìn)行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過10次為關(guān)注點(diǎn)高,否則為關(guān)注點(diǎn)低,調(diào)查情況如下表所示:

關(guān)注點(diǎn)高

關(guān)注點(diǎn)低

總計(jì)

男性用戶

5

女性用戶

7

8

總計(jì)

10

16

1)把上表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為性別與關(guān)注點(diǎn)高低有關(guān)?

2)現(xiàn)要從上述男性用戶中隨機(jī)選出3名參加一項(xiàng)活動(dòng),以表示選中的男性用戶中搶紅包總次數(shù)超過10次的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點(diǎn),側(cè)面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案