【題目】在線段的兩端點各置一個光源,已知光源,的發(fā)光強度之比為,則線段上光照度最小的一點到,的距離之比為______(光學(xué)定律:點的光照度與到光源的距離的平方成反比,與光源的發(fā)光強度成正比)
【答案】
【解析】
設(shè)線段長為L,線段上光照度最小的一點P到,的距離分別為,不妨設(shè),光源的發(fā)光強度之比為1,2,由題意可得P點受光源的照度為:,P點受光源的照度為:,作和后利用導(dǎo)數(shù)求最值,可得P到,的距離,作比得答案.
解:設(shè)線段長為L,線段上光照度最小的一點P到,的距離分別為,不妨設(shè),光源的發(fā)光強度為1,2,
∵光照度與光的強度成正比,設(shè)比例系數(shù)為,
與光源距離的平方成反比,設(shè)比例系數(shù)為,
故P點受光源的照度為:,
P點受光源的照度為:,
故P點受到,兩光源的總照度,
,
令,解得:,
當(dāng)時,,函數(shù)在上遞減,
當(dāng)時,,函數(shù)在上遞增,
故當(dāng)時,取極小值,且是最小值,
故P在線段上距離為時,P點的光照度最小,
此時點P到的距離,之比為.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校對高二600名學(xué)生進行了一次知識測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
分 組 | 頻 數(shù) | 頻 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 |
|
[80,90) |
|
|
[90,100] | 14 | 0.28 |
合 計 |
| 1.00 |
(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);
(2)請你估算該年級學(xué)生成績的中位數(shù);
(3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在[60,70)和[80,90)的人中共抽取6人,再從6人中選2人,求2人分?jǐn)?shù)都在[80,90)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對其親屬30人的飲食習(xí)慣進行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(1)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表;
(2)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān),并寫出簡要分析.
主食蔬菜 | 主食肉類 | 合計 | ||
50歲以下 | ||||
50歲以上 | ||||
合計 | ||||
參考公式:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有相交于點O的一條東西走向的公路l,與南北走向的公路m,這兩條公路都與一塊半徑為1(單位:千米)的圓形商城A相切.根據(jù)市民建議,欲再新建一條公路PQ,點P、Q分別在公路l、m上,且要求PQ與圓形商城A也相切.
(1)當(dāng)P距O處4千米時,求OQ的長;
(2)當(dāng)公路PQ長最短時,求OQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),,三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分?jǐn)?shù)達到80分及其以上的單位被稱為“星級”環(huán)保單位,未達到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分?jǐn)?shù)如下:
類行業(yè):85,82,77,78,83,87;
類行業(yè):76,67,80,85,79,81;
類行業(yè):87,89,76,86,75,84,90,82.
(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);
(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機選取3個單位進行某項調(diào)查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左,右焦點分別為,,且經(jīng)過點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點作一條斜率不為的直線與橢圓相交于兩點,記點關(guān)于軸對稱的點為.證明:直線經(jīng)過軸上一定點,并求出定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)試求函數(shù)的極值點的個數(shù);
(2)若,恒成立,求的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.74 | 1.8 | 10 | |
4.953 | 5.474 | 5.697 | 6.050 | 22026 | |
0.470 | 0.531 | 0.554 | 0.558 | 2.303 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com