【題目】已知是雙曲線的兩個(gè)頂點(diǎn),點(diǎn)是雙曲線上異于的一點(diǎn),為坐標(biāo)原點(diǎn),射線交橢圓于點(diǎn),設(shè)直線、、的斜率分別為、、、.

1)若雙曲線的漸近線方程是,且過點(diǎn),求的方程;

2)在(1)的條件下,如果,求的面積;

3)試問:是否為定值?如果是,請求出此定值;如果不是,請說明理由.

【答案】1;(2的面積為;(3)定值為.

【解析】

1)設(shè)雙曲線的方程為,將點(diǎn)的坐標(biāo)代入雙曲線的方程,求出的值,可求出雙曲線的方程;

2)設(shè)點(diǎn)的坐標(biāo)為,設(shè)直線的方程為,則,由點(diǎn)在雙曲線上得出,可得出,利用斜率公式以及條件可求出射線的方程,由此可得出點(diǎn)的縱坐標(biāo),由此計(jì)算出的面積;

3)由題意得出,設(shè)點(diǎn)、,則,利用斜率公式得出,,由此可得出的值.

1)由于雙曲線的漸近線方程為,可設(shè)雙曲線的方程為,

將點(diǎn)的坐標(biāo)代入雙曲線的方程得

因此,雙曲線的方程為

2)設(shè)射線所在直線的方程為,設(shè)點(diǎn),則,

因?yàn)辄c(diǎn)在雙曲線上,所以,可得.

,.

所以,射線所在直線的方程為.

聯(lián)立直線的方程與橢圓的方程,解得

所以,點(diǎn)的縱坐標(biāo)為,因此,的面積為

3)設(shè)點(diǎn)、

由于點(diǎn)在雙曲線上,則,得,

,,

同理可得,因此,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正和一個(gè)平行四邊形ABDE在同一個(gè)平面內(nèi),其中,AB,DE的中點(diǎn)分別為F,G.現(xiàn)沿直線AB翻折成,使二面角,設(shè)CE中點(diǎn)為H.

1)(i)求證:平面平面AGH;

ii)求異面直線ABCE所成角的正切值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)的導(dǎo)函數(shù),,則函數(shù)的零點(diǎn)個(gè)數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,,則表格中共有5個(gè)1的填表方法種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于任意的,若數(shù)列同時(shí)滿足下列兩個(gè)條件,則稱數(shù)列具有性質(zhì)m;存在實(shí)數(shù)M,使得成立.

數(shù)列中,、),判斷、是否具有性質(zhì)m

若各項(xiàng)為正數(shù)的等比數(shù)列的前n項(xiàng)和為,且,,求證:數(shù)列具有性質(zhì)m;

數(shù)列的通項(xiàng)公式對于任意,數(shù)列具有性質(zhì)m,且對滿足條件的M的最小值,求整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng),時(shí),求函數(shù)的最大值;

2)若函數(shù)存在唯一零點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,,分別是,的中點(diǎn).

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A是同時(shí)符合以下性質(zhì)的函數(shù)f(x)組成的集合:

x[0,+),都有f(x)∈(1,4];f(x)[0,+)上是減函數(shù).

(1)判斷函數(shù)f1(x)2f2(x)1 (x0)是否屬于集合A,并簡要說明理由;

(2)(1)中你認(rèn)為是集合A中的一個(gè)函數(shù)記為g(x),若不等式g(x)g(x2)k對任意的x0總成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案